关于TensorFlow、Keras、Python版本匹配一览表
作者:许野平
这篇文章主要介绍了关于TensorFlow、Keras、Python版本匹配一览表,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
TensorFlow、Keras、Python 版本匹配一览表
兴冲冲装完软件,发现运行不了,查了下资料,发现是TensorFlow、Keras、Python 版本匹配问题。
这里提供一个版本匹配清单,需要严格按此标准安装。
版本匹配清单
Framework | Env name | Description |
---|---|---|
TensorFlow 2.2 | tensorflow-2.2 | TensorFlow 2.2.0 + Keras 2.3.1 on Python 3.7. |
TensorFlow 2.1 | tensorflow-2.1 | TensorFlow 2.1.0 + Keras 2.3.1 on Python 3.6. |
TensorFlow 2.0 | tensorflow-2.0 | TensorFlow 2.0.0 + Keras 2.3.1 on Python 3.6. |
TensorFlow 1.15 | tensorflow-1.15 | TensorFlow 1.15.0 + Keras 2.3.1 on Python 3.6. |
TensorFlow 1.14 | tensorflow-1.14 | TensorFlow 1.14.0 + Keras 2.2.5 on Python 3.6. |
TensorFlow 1.13 | tensorflow-1.13 | TensorFlow 1.13.0 + Keras 2.2.4 on Python 3.6. |
TensorFlow 1.12 | tensorflow-1.12 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 3.6. |
tensorflow-1.12:py2 | TensorFlow 1.12.0 + Keras 2.2.4 on Python 2. | |
TensorFlow 1.11 | tensorflow-1.11 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 3.6. |
tensorflow-1.11:py2 | TensorFlow 1.11.0 + Keras 2.2.4 on Python 2. | |
TensorFlow 1.10 | tensorflow-1.10 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 3.6. |
tensorflow-1.10:py2 | TensorFlow 1.10.0 + Keras 2.2.0 on Python 2. | |
TensorFlow 1.9 | tensorflow-1.9 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 3.6. |
tensorflow-1.9:py2 | TensorFlow 1.9.0 + Keras 2.2.0 on Python 2. | |
TensorFlow 1.8 | tensorflow-1.8 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 3.6. |
tensorflow-1.8:py2 | TensorFlow 1.8.0 + Keras 2.1.6 on Python 2. | |
TensorFlow 1.7 | tensorflow-1.7 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 3.6. |
tensorflow-1.7:py2 | TensorFlow 1.7.0 + Keras 2.1.6 on Python 2. | |
TensorFlow 1.5 | tensorflow-1.5 | TensorFlow 1.5.0 + Keras 2.1.6 on Python 3.6. |
tensorflow-1.5:py2 | TensorFlow 1.5.0 + Keras 2.0.8 on Python 2. | |
TensorFlow 1.4 | tensorflow-1.4 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 3.6. |
tensorflow-1.4:py2 | TensorFlow 1.4.0 + Keras 2.0.8 on Python 2. | |
TensorFlow 1.3 | tensorflow-1.3 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 3.6. |
tensorflow-1.3:py2 | TensorFlow 1.3.0 + Keras 2.0.6 on Python 2. |
附上一段测试程序(鸢尾花分类简化版)
这一段代码不需要准备数据文件,可直接验证是否可以训练模型。
#ex7-2.py #导入库包 import numpy as np import keras import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense #读入数据 train_x = np.array([[1.4, 0.2], [1.7, 0.4], [1.5, 0.4], [2.3, 0.7], [2.7, 1.1], [2.6, 0.9], [4.6, 1.3], [3.5, 1.0], [3.9, 1.2]]) train_y = np.array([[1, 0, 0], [1, 0, 0], [1, 0, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 0, 1], [0, 0, 1], [0, 0, 1]]) #搭建模型 model = Sequential() model.add(Dense(units = 2, input_dim = 2)) #model.add(Dense(units = 2, input_dim = 2, activation = 'sigmoid')) model.add(Dense(units = 3, activation = 'softmax')) #编译模型 model.compile(optimizer = 'adam', loss = 'mse') #训练模型 model.fit(x = train_x, y = train_y, epochs = 10000) #保存模型 keras.models.save_model(model, 'iris2.model')
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。