python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > pandas读取大文件

pandas高效读取大文件的示例详解

作者:databook

使用 pandas 进行数据分析时,第一步就是读取文件,所以这篇文章主要来和大家讨论一下pandas如何高效读取大文件,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下

使用 pandas 进行数据分析时,第一步就是读取文件。

在平时学习和练习的过程中,用到的数据量不会太大,所以读取文件的步骤往往会被我们忽视。

然而,在实际场景中,面对十万,百万级别的数据量是家常便饭,即使千万,上亿级别的数据,单机处理也问题不大。

不过,当数据量和数据属性多了之后,读取文件的性能瓶颈就开始浮现出来。

当我们第一次拿到数据时,经常会反反复复的读取文件,尝试各种分析数据的方法。

如果每次读取文件都要等一段时间,不仅会影响工作效率,还影响心情。

下面记录了我自己优化pandas读取大文件效率的探索过程。

1. 准备部分

首先,准备数据。

下面的测试用的数据是一些虚拟币的交易数据,除了常用的K线数据之外,还包含很多分析因子的值。

import pandas as pd

fp = "all_coin_factor_data_12H.csv"
df = pd.read_csv(fp, encoding="gbk")
df.shape

# 运行结果
(398070, 224)

总数据量接近40万,每条数据有224个属性。

然后,封装一个简单的装饰器来计时函数运行时间。

from time import time

def timeit(func):
    def func_wrapper(*args, **kwargs):
        start = time()
        ret = func(*args, **kwargs)
        end = time()
        spend = end - start
        print("{} cost time: {:.3f} s".format(func.__name__, spend))
        return ret

    return func_wrapper

2. 正常读取

先看看读取这样规模的数据,需要多少时间。

下面的示例中,循环读取10次上面准备的数据all_coin_factor_data_12H.csv

import pandas as pd

@timeit
def read(fp):
    df = pd.read_csv(
        fp,
        encoding="gbk",
        parse_dates=["time"],
    )
    return df

if __name__ == "__main__":
    fp = "./all_coin_factor_data_12H.csv"
    for i in range(10):
        read(fp)

运行结果如下:

读取一次大概27秒左右。

3. 压缩读取

读取的文件all_coin_factor_data_12H.csv大概1.5GB左右,pandas是可以直接读取压缩文件的,尝试压缩之后读取性能是否能够提高。

压缩之后,大约 615MB 左右,压缩前大小的一半不到点。

import pandas as pd

@timeit
def read_zip(fp):
    df = pd.read_csv(
        fp,
        encoding="gbk",
        parse_dates=["time"],
        compression="zip",
    )
    return df

if __name__ == "__main__":
    fp = "./all_coin_factor_data_12H.zip"
    for i in range(10):
        read_zip(fp)

运行结果如下:

读取一次大概34秒左右,还不如直接读取来得快。

4. 分批读取

接下来试试分批读取能不能提高速度,分批读取的方式是针对数据量特别大的情况,单机处理过亿数据量的时候,经常会用到这个方法,防止内存溢出。

先试试每次读取1万条

import pandas as pd

@timeit
def read_chunk(fp, chunksize=1000):
    df = pd.DataFrame()
    reader = pd.read_csv(
        fp,
        encoding="gbk",
        parse_dates=["time"],
        chunksize=chunksize,
    )
    for chunk in reader:
        df = pd.concat([df, chunk])

    df = df.reset_index()
    return df

if __name__ == "__main__":
    fp = "./all_coin_factor_data_12H.csv"
    for i in range(10):
        read_chunk(fp, 10000)

运行结果如下:

和读取压缩文件的性能差不多。

如果调整成每次读取10万条,性能会有一些微提高。

分批读取时,一次读取的越多(只要内存够用),速度越快。

其实我也试了一次读取1千条的性能,非常慢,这里就不截图了。

5. 使用polars读取

前面尝试的方法,效果都不太好,下面引入一个和pandas兼容的库Polars

Polars是一个高性能的DataFrame库,它主要用于操作结构化数据。

它是用Rust写的,主打就是高性能

使用Polars读取文件之后返回的Dataframe虽然和pandasDataFrame不完全一样,当可以通过一个简单的to_pandas方法来完成转换。

下面看看使用Polars读取文件的性能:

import polars as pl

@timeit
def read_pl(fp):
    df = pl.read_csv(
        fp,
        encoding="gbk",
        try_parse_dates=True,
    )
    return df.to_pandas()

if __name__ == "__main__":
    fp = "./all_coin_factor_data_12H.csv"
    for i in range(10):
        read_pl(fp)

运行结果如下:

使用Polars后性能提高非常明显,看来,混合使用Polarspandas是一个不错的方案。

6. 序列化后读取

最后这个方法,其实不是直接读取原始数据,而是将原始数据转换为python自己的序列化格式pickle)之后,再去读取。

这个方法多了一个转换的步骤:

fp = "./all_coin_factor_data_12H.csv"
df = read(fp)
df.to_pickle("./all_coin_factor_data_12H.pkl")

生成一个 序列化文件:all_coin_factor_data_12H.pkl

然后,测试下读取这个序列化文件的性能。

@timeit
def read_pkl(fp):
    df = pd.read_pickle(fp)
    return df

if __name__ == "__main__":
    fp = "./all_coin_factor_data_12H.pkl"
    for i in range(10):
        read_pkl(fp)

运行结果如下:

这个性能出乎意料之外的好,而且csv文件序列化成pkl文件之后,占用磁盘的大小也只有原来的一半。

csv文件1.5GB左右,pkl文件只有690MB

这个方案虽然性能惊人,但也有一些局限,首先是原始文件不能是那种实时变化的数据,因为原始csv文件转换为pkl文件也是要花时间的(上面的测试没有算这个时间)。

其次,序列化之后的pkl文件python专用的,不像csv文件那样通用,不利于其他非python的系统使用。

7. 总结

本文探讨了一些pandas读取大文件的优化方案,最后比较好的就是Polars方案pickle序列化方案。

如果我们的项目是分析固定的数据,比如历史的交易数据,历史天气数据,历史销售数据等等,那么,就可以考虑pickle序列化方案,先花时间讲原始数据序列化,后续的分析中不担心读取文件浪费时间,可以更高效的尝试各种分析思路。

除此之外的情况,建议使用Polars方案

最后补充一点,如果读取文件的性能对你影响不大,那就用原来的方式,千万不要画蛇添足的去优化,把精力花在数据分析的业务上。

以上就是pandas高效读取大文件的示例详解的详细内容,更多关于pandas读取大文件的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文