python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python多进程安全的日志模块

Python使用logging实现多进程安全的日志模块

作者:花酒锄作田

这篇文章主要为大家详细介绍了Python如何使用标准库logging实现多进程安全的日志模块,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下

前言

原本应用的日志是全部输出到os的stdout,也就是控制台输出。因其它团队要求也要保留日志文件,便于他们用其他工具统一采集,另一方面还要保留控制台输出,便于出问题的时候自己直接看pod日志。具体需求如下:

因为不允许随便使用第三方包,所以只能用标准库的logging。一开始想的方法比较挫——对文件加锁,但改来改去发现根本不能给别人review。翻python官方文档的时候发现logging库有个QueueHandlerQueueListener,简单试了下感觉逻辑还算清楚,遂简单整理了下代码。

示例代码

目录结构如下,main.py是入口脚本,logs目录和app.log将有程序运行时自动生成,主要日志功能放在pkg/log.py文件中。pkg/__init__.py为空文件,仅用于标识为python包。

.
├── main.py
├── logs
│   └── app.log
└── pkg
    ├── __init__.py
    └── log.py

pkg/log.py内容如下,主要提供logger已经配置好的日志对象,该对象先将日志记录到QueueHandler,然后QueueListener从队列中取日志,并分别输出到控制台和日志文件中。close_log_queue()方法将在主进程结束时调用。

import logging
from logging.handlers import TimedRotatingFileHandler, QueueHandler, QueueListener
import sys
import os
# from queue import Queue
from multiprocessing import Queue

log_queue = Queue(-1)
queue_listener = ""


logdir = "logs"
logfile = f"{logdir}/app.log"
if not os.path.exists(logdir):
    os.makedirs(logdir, exist_ok=True)

def set_formatter():
    """设置日志格式化器"""
    fmt = "%(asctime)s | %(levelname)s | %(name)s | %(filename)s:%(lineno)d | %(funcName)s | %(message)s"
    datefmt = "%Y-%m-%d %H:%M:%S"
    return logging.Formatter(fmt, datefmt=datefmt)

def set_queue_handler():
    # 不要给QueueHandler重复设置formatter, 会引起重复嵌套
    handler = QueueHandler(log_queue)
    handler.setLevel(logging.INFO)
    return handler
def set_stream_handler(formatter: logging.Formatter):
    # 输出到控制台的日志处理器
    handler = logging.StreamHandler(sys.stdout)
    handler.setLevel(logging.WARNING)
    handler.setFormatter(formatter)
    return handler

def set_timed_rotating_file_handler(formatter: logging.Formatter):
    # 输出到文件的日志处理器, 每天生成一个新文件, 最多保留10个文件
    handler = TimedRotatingFileHandler(logfile, when="midnight", backupCount=10, encoding="utf-8")
    handler.setLevel(logging.INFO)
    handler.setFormatter(formatter)
    return handler

def close_log_queue():
    # 关闭队列监听器
    global queue_listener
    if queue_listener:
        queue_listener.stop()

def get_logger(name: str = "mylogger", level: int = logging.INFO):
    logger = logging.getLogger(name)
    logger.setLevel(level)

    formatter = set_formatter()

    stream_handler = set_stream_handler(formatter)
    file_handler = set_timed_rotating_file_handler(formatter)
    queue_handler = set_queue_handler()

    logger.addHandler(queue_handler)

    global queue_listener
    if not queue_listener:
        queue_listener = QueueListener(log_queue, stream_handler, file_handler, respect_handler_level=True)
        queue_listener.start()

    return logger


logger = get_logger()

if __name__ == "__main__":
    logger.info("test")
    close_log_queue()

main.py内容如下,主要是创建子进程调用logger,观察日志输出是否正常。

from multiprocessing import Process
from pkg.log import logger, close_log_queue
import os

class MyProcess(Process):
    def __init__(self, delay):
        self.delay = delay
        super().__init__()

    def run(self):
        for i in range(self.delay):
            logger.info(f"pid: {os.getpid()}, {i}")

if __name__ == '__main__':
    logger.info(f"main process pid: {os.getpid()}")
    for i in range(10):
        p = MyProcess(10000)
        p.start()
        p.join()

    logger.info("main process end")
    close_log_queue()

执行输出大致如下所示:

$ tail logs/app.log 
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 1
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 2
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 3
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 4
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 5
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 6
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 7
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 8
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 9
2024-01-22 23:10:17 | INFO | mylogger | main.py:21 | <module> | main process end

补充

logging还内置很多其它handler,比如按文件大小自动切割,日志通过HTTP请求输出,日志输出到syslog等,可按照自己需求进行定制。

到此这篇关于Python使用logging实现多进程安全的日志模块的文章就介绍到这了,更多相关Python多进程安全的日志模块内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文