python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python Pipeline处理数据

Python Pipeline处理数据工作原理探究

作者:harvey的网络日志

如果你是一个Python开发者,你可能听过"pipeline"这个术语,但 pipeline 到底是什么,它又有什么用呢?在这篇文章中,我们将探讨 Python 中的 pipeline 概念,它们是如何工作的,以及它们如何帮助你编写更清晰、更高效的代码

什么是 Pipeline?

Pipeline 是一种组织一系列操作或函数来处理数据的方式。一个操作的输出成为下一个操作的输入,依此类推,直到得到最终结果。Pipeline 可以被视为一系列管道,数据从一个管道流向另一个管道,在此过程中进行一些转换或操作。

举个例子,假设你有一个数字列表,你想对它们执行以下操作:

一种方法是编写一个循环,迭代列表并逐个应用每个操作,将中间结果存储在一个新列表中。例如:

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
filtered = []
for n in numbers:
    if n % 2 == 0:
        filtered.append(n)
multiplied = []
for n in filtered:
    multiplied.append(n * 10)
added = []
for n in multiplied:
    added.append(n + 5)
total = 0
count = 0
for n in added:
    total += n
    count += 1
average = total / count
print(average)

这段代码可以工作,但不够优雅和高效。它创建了三个新列表,占用内存,使代码难以阅读。它还需要编写四个循环,这可能会很繁琐且容易出错。

更好的方法是使用 pipeline。Pipeline 允许你将操作链接在一起,而无需创建中间列表或循环。你可以使用内置的 map 和 filter 函数,它们接受一个函数和一个可迭代对象作为参数,并返回一个将函数应用于原始可迭代对象的每个元素的新可迭代对象。你还可以使用 sum 和 len 函数,分别计算可迭代对象的总和和长度。例如:

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
average = sum(map(lambda n: n + 5, map(lambda n: n * 10, filter(lambda n: n % 2 == 0, numbers)))) / len(numbers)
print(average)

这段代码比之前的代码要短和简单得多。它不创建任何新列表或循环,并且很容易看出数据从一个操作流向下一个操作。然而,它仍然不够可读,因为它使用了嵌套的 map 和 filter 调用,这可能会令人困惑且难以理解。

一个更易读的的方法是使用 toolz 库中的 pipe 函数编写 pipeline 。pipe函数接受一个初始值和一系列函数,并将每个函数应用于前一个函数的输出,返回最终结果。例如:

from toolz import pipe
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
average = pipe(numbers, 
               filter(lambda n: n % 2 == 0), 
               map(lambda n: n * 10), 
               map(lambda n: n + 5), 
               lambda x: sum(x) / len(x))
print(average)

这段代码比之前的代码更可读和优雅。它清楚地展示了应用于数据的操作序列,而且没有使用任何嵌套调用或中间列表。pipe 函数使代码看起来像一个流水线,数据从一个函数流向下一个函数。

为什么使用 Pipeline?

Pipeline 相对于其他代码组织方式有几个优点,其中一个是:

+灵活性:Pipeline 可以轻松修改或扩展,因为它允许添加、删除或更改操作的顺序,而不影响其他部分的代码。Pipeline 还支持不同类型的操作,例如过滤、映射、归约、聚合、分组、排序等,可以以各种方式组合以达到不同的结果。

如何在Python中使用Pipeline?

在 Python 中,有多种创建和使用 Pipeline 的方法,其中一些包括:

总结

希望这篇博文帮助你理解了什么是Pipeline以及如何在Python中使用它们,更多关于Python Pipeline处理数据的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文