python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python pickle 二进制序列化

Python pickle 二进制序列化和反序列化及数据持久化详解

作者:VipSoft  博客园VIP会员

这篇文章主要介绍了Python pickle 二进制序列化和反序列化 - 数据持久化,模块 pickle 实现了对一个 Python 对象结构的二进制序列化和反序列化,本文介绍了Pickle的基本用法,需要的朋友可以参考下

模块 pickle 实现了对一个 Python 对象结构的二进制序列化和反序列化。 "pickling" 是将 Python 对象及其所拥有的层次结构转化为一个字节流的过程,而 "unpickling" 是相反的操作,会将(来自一个 binary file 或者 bytes-like object 的)字节流转化回一个对象层次结构。 pickling(和 unpickling)也被称为“序列化”, “编组” 1 或者 “平面化”。而为了避免混乱,此处采用术语 “封存 (pickling)” 和 “解封 (unpickling)”。

pickle 模块 并不安全。 你只应该对你信任的数据进行 unpickle 操作。
构建恶意的 pickle 数据来 在解封时执行任意代码 是可能的。 绝对不要对不信任来源的数据和可能被篡改过的数据进行解封。
请考虑使用 hmac 来对数据进行签名,确保数据没有被篡改。
在你处理不信任数据时,更安全的序列化格式如 json 可能更为适合。

与 json 模块的比较

在 pickle 协议和 JSON (JavaScript Object Notation) 之间有着本质上的差异:

Pickle的基本用法

序列化(Pickling)

要将Python对象序列化为二进制数据,可以使用pickle.dump()函数。以下是一个简单的示例,将一个Python列表保存到文件中:

import pickle
data = [1, 2, 3, 4, 5]
# 打开一个文件以写入二进制数据
with open('data/data.pkl', 'wb') as file:
    pickle.dump(data, file)

在上述代码中,使用pickle.dump()函数将data列表序列化为二进制数据,并将其保存到名为data.pkl的文件中。参数'wb'表示以二进制写入模式打开文件。

反序列化(Unpickling)

要从文件中加载并反序列化二进制数据,可以使用pickle.load()函数。以下是加载data.pkl文件并还原Python对象的示例:

import pickle
# 打开文件以读取二进制数据
with open('data/data.pkl', 'rb') as file:
    loaded_data = pickle.load(file)
print("反序列化 %s" % loaded_data)

在上述代码中,使用pickle.load()函数从data.pkl文件中加载数据,并将其还原为Python对象。

Pickle的工作原理

pickle模块的工作原理涉及到将Python对象转换为一种可序列化的中间格式,然后再将该中间格式序列化为二进制数据。这个中间格式是一个自包含的表示对象的字典,其中包含了对象的数据和其类型信息。

当使用pickle.dump()序列化对象时,pickle 模块首先创建一个包含对象数据和类型信息的中间字典。然后,它将该字典转换为二进制数据。反序列化时,pickle模块将二进制数据还原为中间字典,然后再从字典中还原Python对象。

这种方法使pickle模块非常灵活,因为它可以序列化几乎所有Python对象,包括自定义对象,只要它们可以在中间字典中表示。

Pickle的适用场景

pickle模块在以下情况下非常有用:

Pickle的注意事项

尽管pickle非常方便,但在使用它时需要注意一些事项:

示例代码

以下是一个示例代码,演示如何使用pickle模块来序列化和反序列化一个自定义Python对象:

import pickle
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    def __str__(self):
        return f"Person(name='{self.name}', age={self.age})"
# 创建一个自定义对象
person = Person("Alice", 30)
# 序列化并保存到文件
with open('data/person.pkl', 'wb') as file:
    pickle.dump(person, file)
# 从文件中加载并反序列化
with open('data/person.pkl', 'rb') as file:
    loaded_person = pickle.load(file)
print(loaded_person)  # 输出: Person(name='Alice', age=30)

在上述代码中,我们首先定义了一个自定义类Person,然后创建了一个Person对象。我们使用pickle将该对象序列化为二进制数据,然后再从二进制数据中反序列化还原对象。

到此这篇关于Python pickle 二进制序列化和反序列化 - 数据持久化的文章就介绍到这了,更多相关Python pickle 二进制序列化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文