python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python asyncio

python协程异步IO中asyncio的使用

作者:金色旭光

这篇文章主要介绍了python异步编程之asyncio的使用,python中异步IO操作是通过asyncio来实现的,为了更加详细说明asyncio,我们先从协程的最基础开始讲解

async await介绍

用asyncio提供的@asyncio.coroutine可以把一个生成器标记为协程类型,然后在协程内部用yield from 等待IO操作,让出cpu执行权。
然而异步的关键字yield 和 yield from毕竟是复用生成器关键字,两者在概念上纠缠不清,所以从Python 3.5开始引入了新的语法async和await替换yield 和 yield from,让协程的代码更易懂。
简单来说,可以这样理解:

async实现协程示例 

由于协程在各个python版本中有细微差异,本篇以python3.10为例

import asyncio
async def coro1():
    print("start coro1")
    await asyncio.sleep(2)
    print("end coro1")
async def coro2():
    print("start coro2")
    await asyncio.sleep(1)
    print("end coro2")
# 创建事件循环
loop = asyncio.get_event_loop()
# 创建任务
task1 = loop.create_task(coro1())
task2 = loop.create_task(coro2())
# 运行协程
loop.run_until_complete(asyncio.gather(task1, task2))
# 关闭事件循环
loop.close()

输出结果:

start coro1
start coro2
end coro2
end coro1

代码逻辑:

从示例代码可以看出,协程的几个关键要素:

协程基本原理

组成协程最重要的因素就是事件循环和任务。

伪代码示例如下:

任务列表 = [ 任务1, 任务2, 任务3,... ]

while True:
    可执行的任务列表,已完成的任务列表 = 去任务列表中检查所有的任务,将'可执行'和'已完成'的任务返回
    for 就绪任务 in 已准备就绪的任务列表:
        执行已就绪的任务
    for 已完成的任务 in 已完成的任务列表:
        在任务列表中移除 已完成的任务

    如果 任务列表 中的任务都已完成,则终止循环

获取和创建事件循环:loop = asyncio.get_event_loop()

驱动事件循环运行:loop.run_until_complete(asyncio.gather(task1, task2))

事件循环过程:

事件循环中执行任务,当执行到某一个任务时遇到IO时,协程会让出CPU给第二个任务执行,第二个任务中遇到IO再次让出CPU,直到所有任务完成。这就是协程并发性能好的一个关键能力:遇到IO切换任务执行避免了程序等待IO完成再执行的耗时。

示例代码的高级api实现

示例代码中使用了asyncio.get_event_loop()和 loop.run_until_complete()等代码,这些其实asyncio包的低级API,是为了展示底层原理而使用的。通常更推荐高级APIasyncio.run()实现协程并发。

import asyncio
async def coro1():
    print("start coro1")
    await asyncio.sleep(2)
    print("end coro1")
async def coro2():
    print("start coro2")
    await asyncio.sleep(1)
    print("end coro2")
async def main():
    task1 = asyncio.create_task(coro1())
    task2 = asyncio.create_task(coro2())
    await asyncio.gather(task1, task2)
asyncio.run(main())

run() 从功能上等价于以下低阶API

loop = asyncio.get_event_loop()
task = loop.create_task(coro())
loop.run_until_complete(task)

为什么协程在IO密集时性能较好

很多人可能会疑问,多线程遇到IO也会切换,为什么协程比线程性能好呢?

简单来是三点:

以上就是python协程异步IO中asyncio的使用的详细内容,更多关于python asyncio的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文