Python 中的Schema数据结构及类型校验详解
作者:jruing
schema 是一个简单而强大的库,用于定义和验证 Python 数据结构的约束,使用 schema 库来执行数据结构的校验,本文给大家介绍Python 中的Schema数据结构及类型校验,感兴趣的朋友一起看看吧
使用
schema
库来执行数据结构的校验。schema
是一个简单而强大的库,用于定义和验证 Python 数据结构的约束
And
And
代表必选,数据结构里必须包含这个 schema,如下方声明了name
,则代表这个name
必须存在与字典中
from schema import Schema, And, SchemaError user_schema = Schema([ { "name": And(str) } ]) user_data_1 = [{ "name": "jruing", }] user_data_2 = [{ "name": 666, }] try: user_result_1 = user_schema.validate(user_data_1) print(f"数据校验user_result_1:{user_result_1}") except SchemaError as e: print(f"数据校验异常user_result_1:{e}") try: user_result_2 = user_schema.validate(user_data_2) print(f"数据校验user_result_2:{user_result_2}") except SchemaError as e: print(f"数据校验异常user_result_2:{e}") ==========调用结果========== 数据校验user_result_1:[{'name': 'jruing'}] 数据校验异常user_result_2:Or({'name': And(<class 'str'>)}) did not validate {'name': 666} Key 'name' error: 666 should be instance of 'str'
Or
Or
代表值的类型必须为某两个类型,比如int
或float
,tuple
或list
from schema import Schema, And, SchemaError, Or user_schema = Schema([ { "name": And(str), "money": Or(int,float) } ]) user_data_1 = [{ "name": "jruing", "money": 1000, }] user_data_2 = [{ "name": "jruing", "money": 1000.1, }] user_data_3 = [{ "name": "jruing", "money": "1000.1", }] try: user_result_1 = user_schema.validate(user_data_1) print(f"数据校验user_result_1:{user_result_1}") except SchemaError as e: print(f"数据校验异常user_result_1:{e}") try: user_result_2 = user_schema.validate(user_data_2) print(f"数据校验user_result_2:{user_result_2}") except SchemaError as e: print(f"数据校验异常user_result_2:{e}") try: user_result_3 = user_schema.validate(user_data_3) print(f"数据校验user_result_3:{user_result_3}") except SchemaError as e: print(f"数据校验异常user_result_3:{e}") ==========调用结果========== 数据校验user_result_1:[{'name': 'jruing', 'money': 1000, 'addr': '中国', 'country': '中国', 'email': '123456@qq.com'}] 数据校验异常user_result_2:Or({'name': And(<class 'str'>), 'money': Or(<class 'int'>, <class 'float'>), Optional('addr'): And(<class 'str'>), Optional('email'): And(<class 'str'>, Regex('^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$', flags=re.IGNORECASE)), 'country': Const('中国')}) did not validate {'name': 'jruing', 'money': 1000.1, 'addr': '1111', 'country': '山西', 'email': '123456'} Key 'country' error: '中国' does not match '山西'
Const
Const
代表值必须为指定的某个常量,比如下面的country
必须为中国
import re from schema import Schema, And, SchemaError, Or, Optional, Regex, Const user_schema = Schema([ { "name": And(str), "money": Or(int, float), Optional("addr"): And(str), Optional("email"): And(str, Regex(r'^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$', flags=re.I)), "country": Const("中国") } ]) user_data_1 = [{ "name": "jruing", "money": 1000, "addr": "中国", "country": "中国", "email": "123456@qq.com" }] user_data_2 = [{ "name": "jruing", "money": 1000.1, "addr": "1111", "country": "山西", "email": "123456" }] try: user_result_1 = user_schema.validate(user_data_1) print(f"数据校验user_result_1:{user_result_1}") except SchemaError as e: print(f"数据校验异常user_result_1:{e}") try: user_result_2 = user_schema.validate(user_data_2) print(f"数据校验user_result_2:{user_result_2}") except SchemaError as e: print(f"数据校验异常user_result_2:{e}") ==========调用结果========== 数据校验user_result_1:[{'name': 'jruing', 'money': 1000, 'addr': '中国', 'country': '中国', 'email': '123456@qq.com'}] 数据校验异常user_result_2:Or({'name': And(<class 'str'>), 'money': Or(<class 'int'>, <class 'float'>), Optional('addr'): And(<class 'str'>), Optional('email'): And(<class 'str'>, Regex('^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$', flags=re.IGNORECASE)), 'country': Const('中国')}) did not validate {'name': 'jruing', 'money': 1000.1, 'addr': '1111', 'country': '山西', 'email': '123456'} Key 'country' error: '中国' does not match '山西'
Optional
Optional
代表这个key或者元素为非必选,可有可无
from schema import Schema, And, SchemaError, Or, Optional user_schema = Schema([ { "name": And(str), "money": Or(int, float), Optional("addr"): And(str) } ]) user_data_1 = [{ "name": "jruing", "money": 1000, "addr": "中国" }] user_data_2 = [{ "name": "jruing", "money": 1000.1, }] try: user_result_1 = user_schema.validate(user_data_1) print(f"数据校验user_result_1:{user_result_1}") except SchemaError as e: print(f"数据校验异常user_result_1:{e}") try: user_result_2 = user_schema.validate(user_data_2) print(f"数据校验user_result_2:{user_result_2}") except SchemaError as e: print(f"数据校验异常user_result_2:{e}") ==========调用结果========== 数据校验user_result_1:[{'name': 'jruing', 'money': 1000, 'addr': '中国'}] 数据校验user_result_2:[{'name': 'jruing', 'money': 1000.1}]
Use
Use
函数允许你在验证前对数据进行转换。这对于在验证之前对数据进行清理、格式化或其他操作非常有用。
import re from schema import Schema, And, SchemaError, Or, Optional, Regex, Const, Use user_schema = Schema([ { "name": And(str), "money": Or(int, float), "age": Use(int), Optional("addr"): And(str), Optional("email"): And(str, Regex(r'^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$', flags=re.I)), Optional("country"): Const("中国") } ]) user_data_1 = [{ "name": "jruing", "money": 1000, "age": 11, "addr": "中国", "country": "中国", "email": "123456@qq.com" }] user_data_2 = [{ "name": "jruing", "money": 1000.1, "age": "18", "addr": "1111", "email": "123456@qq.com" }] user_data_3 = [{ "name": "jruing", "money": 1000.1, "age": "fff", "addr": "1111", "email": "123456@qq.com" }] try: user_result_1 = user_schema.validate(user_data_1) print(f"数据校验user_result_1:{user_result_1}") except SchemaError as e: print(f"数据校验异常user_result_1:{e}") try: user_result_2 = user_schema.validate(user_data_2) print(f"数据校验user_result_2:{user_result_2}") except SchemaError as e: print(f"数据校验异常user_result_2:{e}") try: user_result_3 = user_schema.validate(user_data_3) print(f"数据校验user_result_3:{user_result_3}") except SchemaError as e: print(f"数据校验异常user_result_3:{e}") ==========调用结果========== 数据校验user_result_1:[{'name': 'jruing', 'money': 1000, 'age': 11, 'addr': '中国', 'country': '中国', 'email': '123456@qq.com'}] 数据校验user_result_2:[{'name': 'jruing', 'money': 1000.1, 'age': 18, 'addr': '1111', 'email': '123456@qq.com'}] 数据校验异常user_result_3:Or({'name': And(<class 'str'>), 'money': Or(<class 'int'>, <class 'float'>), 'age': Use(<class 'int'>), Optional('addr'): And(<class 'str'>), Optional('email'): And(<class 'str'>, Regex('^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$', flags=re.IGNORECASE)), Optional('country'): Const('中国')}) did not validate {'name': 'jruing', 'money': 1000.1, 'age': 'fff', 'addr': '1111', 'email': '123456@qq.com'} Key 'age' error: int('fff') raised ValueError("invalid literal for int() with base 10: 'fff'")
Regex
通过正则表达式,对值进行匹配校验,常用的就是邮箱,手机号等场景
import re from schema import Schema, And, SchemaError, Or, Optional, Regex user_schema = Schema([ { "name": And(str), "money": Or(int, float), Optional("addr"): And(str), Optional("email"): And(str, Regex(r'^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$', flags=re.I)) } ]) user_data_1 = [{ "name": "jruing", "money": 1000, "addr": "中国", "email": "123456@qq.com" }] user_data_2 = [{ "name": "jruing", "money": 1000.1, "addr": "1111", "email": "123456" }] try: user_result_1 = user_schema.validate(user_data_1) print(f"数据校验user_result_1:{user_result_1}") except SchemaError as e: print(f"数据校验异常user_result_1:{e}") try: user_result_2 = user_schema.validate(user_data_2) print(f"数据校验user_result_2:{user_result_2}") except SchemaError as e: print(f"数据校验异常user_result_2:{e}") ==========调用结果========== 数据校验user_result_1:[{'name': 'jruing', 'money': 1000, 'addr': '中国', 'email': '123456@qq.com'}] 数据校验异常user_result_2:Or({'name': And(<class 'str'>), 'money': Or(<class 'int'>, <class 'float'>), Optional('addr'): And(<class 'str'>), Optional('email'): And(<class 'str'>, Regex('^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$', flags=re.IGNORECASE))}) did not validate {'name': 'jruing', 'money': 1000.1, 'addr': '1111', 'email': '123456'} Key 'email' error: Regex('^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$', flags=re.IGNORECASE) does not match '123456'
Forbidden
Forbidder
允许你定义一些不被允许的值,如果数据中包含这些值,验证将失败,下面的例子表示密码password
字段的值不允许设置为123456
import re from schema import Schema, And, SchemaError, Or, Optional, Regex, Const, Use, Forbidden user_schema = Schema([ { "name": And(str), "money": Or(int, float), "age": Use(int), Optional("addr"): And(str), Optional("email"): And(str, Regex(r'^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$', flags=re.I)), Optional("country"): Const("中国"), "password": And(str, Forbidden("123456")) } ]) user_data_1 = [{ "name": "jruing", "money": 1000, "age": 11, "addr": "中国", "country": "中国", "email": "123456@qq.com", "password": "123456" }] user_data_2 = [{ "name": "jruing", "money": 1000.1, "age": "18", "addr": "1111", "email": "123456@qq.com", "password": "1234561" }] try: user_result_1 = user_schema.validate(user_data_1) print(f"数据校验user_result_1:{user_result_1}") except SchemaError as e: print(f"数据校验异常user_result_1:{e}") try: user_result_2 = user_schema.validate(user_data_2) print(f"数据校验user_result_2:{user_result_2}") except SchemaError as e: print(f"数据校验异常user_result_2:{e}") ==========调用结果========== 数据校验user_result_1:[{'name': 'jruing', 'money': 1000, 'age': 11, 'addr': '中国', 'country': '中国', 'email': '123456@qq.com', 'password': '123456'}] 数据校验异常user_result_2:Or({'name': And(<class 'str'>), 'money': Or(<class 'int'>, <class 'float'>), 'age': Use(<class 'int'>), Optional('addr'): And(<class 'str'>), Optional('email'): And(<class 'str'>, Regex('^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$', flags=re.IGNORECASE)), Optional('country'): Const('中国'), 'password': And(<class 'str'>, Forbidden('123456'))}) did not validate {'name': 'jruing', 'money': 1000.1, 'age': '18', 'addr': '1111', 'email': '123456@qq.com', 'password': '1234561'} Key 'password' error: '123456' does not match '1234561'
到此这篇关于Python 中的Schema数据结构及类型校验的文章就介绍到这了,更多相关Python Schema数据结构内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!