python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Boston数据集预测房价

Boston数据集预测放假及应用优缺点评估

作者:皮牙子抓饭

这篇文章主要为大家介绍了Boston数据集预测放假及应用优缺点评估,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

什么是Boston数据集?

Boston数据集是一个经典的回归分析数据集,包含了美国波士顿地区的房价数据以及相关的属性信息。该数据集共有506个样本,13个属性,其中包括12个特征变量和1个目标变量(房价中位数)。

数据集的属性信息

Boston数据集的13个属性信息如下:

数据集的应用

Boston数据集是一个非常经典的数据集,在机器学习和数据科学领域中广泛应用。它可以用于回归分析、特征工程、数据可视化和模型评估等方面。 一些常见的应用包括:

Boston数据集进行房价预测

Boston数据集是一个非常有用的数据集,可以用于回归分析、特征工程、数据可视化和模型评估等方面。通过对Boston数据集的学习和应用,可以提高我们的数据分析和机器学习技能,为实际问题的解决提供帮助。

以下是一个使用Boston数据集进行房价预测的示例代码:

pythonCopy codeimport pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 加载Boston数据集
boston_data = pd.read_csv('boston.csv')
# 提取特征变量和目标变量
X = boston_data.drop('MEDV', axis=1)
y = boston_data['MEDV']
# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建线性回归模型
model = LinearRegression()
# 在训练集上拟合模型
model.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = model.predict(X_test)
# 计算均方根误差(RMSE)
rmse = mean_squared_error(y_test, y_pred, squared=False)
print("均方根误差(RMSE):", rmse)

在这个示例中,我们首先使用pandas库加载Boston数据集,并将特征变量(X)和目标变量(y)分开。然后,我们使用train_test_split函数将数据集划分为训练集和测试集。接下来,我们创建一个线性回归模型,并在训练集上拟合模型。最后,我们使用训练好的模型在测试集上进行预测,并计算预测结果与真实值之间的均方根误差(RMSE)作为模型评估指标。 这个示例展示了如何利用Boston数据集进行房价预测的基本步骤,可以根据具体需求进行进一步的模型调优和特征工程。

Boston数据集是一个非常经典的回归分析数据集,但它也存在一些缺点。以下是Boston数据集的缺点以及类似数据集的介绍:

Boston数据集的缺点

类似的数据集

以上就是Boston数据集预测放假及应用优缺点评估的详细内容,更多关于Boston数据集预测房价的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文