python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Pydantic序列化

Python中的Pydantic序列化详解

作者:__如风__

这篇文章主要介绍了Python中的Pydantic序列化详解,Pydantic 是 Python 中一个高性能的数据验证和序列化库,它提供了一个简单而强大的方式来定义结构化的数据,并在应用程序的各个层次中使用这些数据,需要的朋友可以参考下

Pydantic系列之序列化

model_dump

model_dump将对象转化为字典对象,之后便可以调用Python标准库序列化为json字符串,会序列化嵌套对象。

也可以使用dict(model)将对象转化为字典,但嵌套对象不会被转化为字典。

自定义序列化

@field_serializer

装饰在实例方法或者静态方法,被装饰方法可以是以下四种。

  1. (self, value: Any, info: FieldSerializationInfo)
  2. (self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo)
  3. (value: Any, info: SerializationInfo)
  4. (value: Any, nxt: SerializerFunctionWrapHandler, info: SerializationInfo)

默认为PlainSerializer,不走pydantic的序列化逻辑,此时的方法签名只能是1或3,

nxt参数为pydantic序列化链

mode='wrap’支持上述四个方法签名,可完成前置处理,pydantic序列化逻辑,载返回之前再处理的逻辑。

from datetime import datetime, timedelta, timezone
from pydantic import BaseModel, ConfigDict, field_serializer
from pydantic_core.core_schema import FieldSerializationInfo, SerializerFunctionWrapHandler
class WithCustomEncoders(BaseModel):
    model_config = ConfigDict(ser_json_timedelta='iso8601')
    dt: datetime
    diff: timedelta
    diff2: timedelta
    @field_serializer('dt')
    def serialize_dt(self, dt: datetime, _info: FieldSerializationInfo):
        print(_info)
        return dt.timestamp()
    # 下面的装饰器先执行
    @field_serializer('diff')
    def ssse(self, diff: timedelta, info: FieldSerializationInfo):
        print(info)
        return diff.total_seconds()
    @field_serializer('diff2', mode='wrap')
    @staticmethod
    def diff2_ser(diff2: timedelta, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo):
        value = nxt(diff2)
        return value + 'postprocess'
m = WithCustomEncoders(
    dt=datetime(2032, 6, 1, tzinfo=timezone.utc), diff=timedelta(minutes=2),
    diff2=timedelta(minutes=1)
)
print(m.model_dump_json())
# {"dt":1969660800.0,"diff":120.0,"diff2":"PT60Spostprocess"}

@model_serializer

from typing import Dict, Any
from pydantic import BaseModel, model_serializer
from pydantic_core.core_schema import SerializerFunctionWrapHandler, SerializationInfo
class Model(BaseModel):
    x: str
    @model_serializer
    def ser_model(self, info: SerializationInfo):
        print(info)
        return {'x': f'xxxxxx {self.x}'}
    @model_serializer(mode='wrap')
    def ser_model_wrap(self, nxt: SerializerFunctionWrapHandler, info: SerializationInfo) -> Dict[str, Any]:
        print(info)
        return {'x': f'serialized {nxt(self)}'}
print(Model(x='test value').model_dump_json())
# {"x":"serialized {'x': 'test value'}"}

PlainSerializer和WrapSerializer

from typing import Any
from typing_extensions import Annotated
from pydantic import BaseModel, SerializerFunctionWrapHandler
from pydantic.functional_serializers import WrapSerializer, PlainSerializer
def ser_wrap(v: Any, nxt: SerializerFunctionWrapHandler) -> str:
    return f'{nxt(v + 1):,}'
FancyInt = Annotated[int, WrapSerializer(ser_wrap, when_used='json')]
DoubleInt = Annotated[int, PlainSerializer(lambda x: x * 2)]
class MyModel(BaseModel):
    x: FancyInt
    y: DoubleInt
print(MyModel(x=1234, y=2).model_dump())
# {'x': 1234, 'y': 4}
print(MyModel(x=1234, y=2).model_dump(mode='json'))
# {'x': '1,235', 'y': 4}

如何指定某个类型的序列化行为

在 pydantic v1 版本,configdict有个json_encoders参数,可以配置指定类型的序列化行为。 在 pydantic v2 版本,不推荐json_encoders参数,可使用如下方式

def serialize_datetime(value: datetime.datetime, __: SerializerFunctionWrapHandler, _: SerializationInfo):
    return value.strftime('%Y-%m-%d %H:%M:%S')
LocalDateTime = Annotated[datetime.datetime, WrapSerializer(serialize_datetime, when_used='json')]

按照声明类型序列化,而不是实际类型

当某个属性的声明类型是可序列化类型时,如 BaseModel , dataclass , TypedDict 等,按照声明类型序列化,而不是实际类型。如果想改变这种行为,可以使用 SerializeAsAny 。

from pydantic import BaseModel, SerializeAsAny
class User(BaseModel):
    name: str
class UserLogin(User):
    password: str
class OuterModel(BaseModel):
    # 声明为User类型,按照User类序列化,只有name字段
    user: User
    user1: SerializeAsAny[User] = UserLogin(name='serialize as any', password='hunter')
# 实际类型为UserLogin
user = UserLogin(name='pydantic', password='hunter2')
m = OuterModel(user=user)
print(m)
# user=UserLogin(name='pydantic', password='hunter2') user1=UserLogin(name='serialize as any', password='hunter')
print(m.model_dump())
# {'user': {'name': 'pydantic'}, 'user1': {'name': 'serialize as any', 'password': 'hunter'}}

pickle

# TODO need to get pickling to work
import pickle
from pydantic import BaseModel
class FooBarModel(BaseModel):
    a: str
    b: int
m = FooBarModel(a='hello', b=123)
print(m)
#> a='hello' b=123
data = pickle.dumps(m)
print(data[:20])
#> b'\x80\x04\x95\x95\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main_'
m2 = pickle.loads(data)
print(m2)
#> a='hello' b=123

灵活的exclude和include

from pydantic import BaseModel, SecretStr
class User(BaseModel):
    id: int
    username: str
    password: SecretStr
class Transaction(BaseModel):
    id: str
    user: User
    value: int
t = Transaction(
    id='1234567890',
    user=User(id=42, username='JohnDoe', password='hashedpassword'),
    value=9876543210,
)
# using a set:
print(t.model_dump(exclude={'user', 'value'}))
#> {'id': '1234567890'}
# using a dict:
print(t.model_dump(exclude={'user': {'username', 'password'}, 'value': True}))
#> {'id': '1234567890', 'user': {'id': 42}}
print(t.model_dump(include={'id': True, 'user': {'id'}}))
#> {'id': '1234567890', 'user': {'id': 42}}

到此这篇关于Python中的Pydantic序列化详解的文章就介绍到这了,更多相关Pydantic序列化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文