如何使用pytorch实现LocallyConnected1D
作者:幸福右手牵
由于LocallyConnected1D是Keras中的函数,为了用pytorch实现LocallyConnected1D并在960×33的数据集上进行训练和验证,本文分步骤给大家介绍如何使用pytorch实现LocallyConnected1D,感兴趣的朋友一起看看吧
一、实现方案
由于LocallyConnected1D是Keras中的函数,为了用pytorch实现LocallyConnected1D并在960×33的数据集上进行训练和验证,我们需要执行以下步骤:
1、定义 LocallyConnected1D 模块。
2、创建模型、损失函数和优化器。
3、分割数据集为训练和验证子集。
4、训练模型并在每个epoch后进行验证。
二、代码实现
1、定义LocallyConnected1D:
import torch import torch.nn as nn class LocallyConnected1D(nn.Module): def __init__(self, input_channels, output_channels, output_length, kernel_size): super(LocallyConnected1D, self).__init__() self.output_length = output_length self.kernel_size = kernel_size # Weight tensor self.weight = nn.Parameter(torch.randn(output_length, input_channels, kernel_size, output_channels)) self.bias = nn.Parameter(torch.randn(output_length, output_channels)) def forward(self, x): outputs = [] for i in range(self.output_length): local_input = x[:, :, i:i+self.kernel_size] local_output = (local_input.unsqueeze(-1) * self.weight[i]).sum(dim=2) + self.bias[i] outputs.append(local_output) return torch.stack(outputs, dim=2)
2、定义模型、训练与验证:
import torch import torch.nn as nn from torch.utils.data import DataLoader, random_split, TensorDataset # Generate random data n_samples = 960 input_size = 33 X = torch.randn(n_samples, 1, input_size) y = torch.randint(0, 2, (n_samples,)) # Split into train and validation sets dataset = TensorDataset(X, y) train_size = int(0.8 * len(dataset)) val_size = len(dataset) - train_size train_dataset, val_dataset = random_split(dataset, [train_size, val_size]) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False) # Define model class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.lc = LocallyConnected1D(1, 16, 29, 5) self.fc = nn.Linear(29*16, 2) def forward(self, x): x = self.lc(x) x = x.view(x.size(0), -1) return self.fc(x) model = Model() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # Training and validation num_epochs = 10 for epoch in range(num_epochs): # Training model.train() train_loss = 0 for batch_x, batch_y in train_loader: optimizer.zero_grad() outputs = model(batch_x) loss = criterion(outputs, batch_y) loss.backward() optimizer.step() train_loss += loss.item() # Validation model.eval() val_loss = 0 with torch.no_grad(): for batch_x, batch_y in val_loader: outputs = model(batch_x) loss = criterion(outputs, batch_y) val_loss += loss.item() print(f"Epoch {epoch + 1}/{num_epochs}, " f"Training Loss: {train_loss / len(train_loader)}, " f"Validation Loss: {val_loss / len(val_loader)}")
到此这篇关于如何使用pytorch实现LocallyConnected1D的文章就介绍到这了,更多相关pytorch实现LocallyConnected1D内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!