为什么在函数中运行的 Python 代码速度更快?
作者:咸鱼Linux运维
当谈到编程效率和性能优化时,Python 常常被调侃为“慢如蜗牛”
有趣的是,Python 代码在函数中运行往往比在全局范围内运行要快得多
小伙伴们可能会有这个疑问:为什么在函数中运行的 Python 代码速度更快?
今天这篇文章将会解答大家心中的疑惑
原文链接:https://stackabuse.com/why-does-python-code-run-faster-in-a-function/
译文
要理解为什么 Python 代码在函数中运行得更快,我们需要首先了解 Python 是如何执行代码的
我们知道,python 是一种解释型语言,它会逐行读取并执行代码
当运行一个 python 程序的时候,首先将代码编译成字节码(一种更接近机器码的中间语言)然后 python 解释器执行字节码
def hello_world(): print("Hello, World!") import dis dis.dis(hello_world)
#结果 2 0 LOAD_GLOBAL 0 (print) 2 LOAD_CONST 1 ('Hello, World!') 4 CALL_FUNCTION 1 6 POP_TOP 8 LOAD_CONST 0 (None) 10 RETURN_VALUE
由上所示,python 中的 dis 模块将函数 hello_world
分解为字节码
需要注意的是,python 解释器是一个执行字节码的虚拟机,默认的 python 解释器是用 C 编写的,即 CPython
还有其他的 python 解释器如 Jython(用 Java 编写),IronPython(用于 .net)和PyPy(用 Python 和 C 编写)
为什么 Python 代码在函数中运行得更快
我们来编写一个简单的例子:定义一个函数 my_function
,函数内部包含一个 for 循环
def my_function(): for i in range(100000000): pass
编译该函数的时候,字节码可能如下所示
SETUP_LOOP 20 (to 23) LOAD_GLOBAL 0 (range) LOAD_CONST 3 (100000000) CALL_FUNCTION 1 GET_ITER FOR_ITER 6 (to 22) STORE_FAST 0 (i) JUMP_ABSOLUTE 13 POP_BLOCK LOAD_CONST 0 (None) RETURN_VALUE
这里的关键指令是 STORE_FAST
,用于存储循环变量 i
现在我们把这个 for 循环放在 python 脚本的顶层(全局范围内),然后再来看一下字节码
for i in range(100000000): pass
SETUP_LOOP 20 (to 23) LOAD_NAME 0 (range) LOAD_CONST 3 (100000000) CALL_FUNCTION 1 GET_ITER FOR_ITER 6 (to 22) STORE_NAME 1 (i) JUMP_ABSOLUTE 13 POP_BLOCK LOAD_CONST 2 (None) RETURN_VALUE
可以看到关键指令变成了 STORE_NAME
,而不是 STORE_FAST
字节码 STORE_FAST
比 STORE_NAME
快,因为在函数中,局部变量存储在固定长度的数组中,而不是存储在字典中。这个数组可以通过索引直接访问,使得变量检索非常快
基本上,它只是一个指向列表的指针,并增加了 PyObject 的引用计数,这两个都是高效的操作
另一方面,全局变量存储在一个字典。当访问全局变量时,Python 必须执行哈希表查找,这涉及计算哈希值,然后检索与之关联的值
虽然经过优化,但仍然比基于索引的查找慢
基准测试验证
我们知道在 Python 中,代码执行的速度取决于代码执行的位置——在函数中还是在全局作用域中
让我们用一个简单的基准测试的例子来比较一下
首先定义一个求阶乘的函数
def factorial(n): result = 1 for i in range(1, n + 1): result *= i return result
然后在全局范围内执行相同的代码
n = 20 result = 1 for i in range(1, n + 1): result *= i
为了对这两段代码进行基准测试,我们可以在 Python 中使用 timeit
模块,它提供了一种简单的方法来对少量 Python 代码进行计时
import timeit # 函数 def benchmark(): start = timeit.default_timer() factorial(20) end = timeit.default_timer() print(end - start) benchmark() # Prints: 3.541994374245405e-06 # 全局范围 start = timeit.default_timer() n = 20 result = 1 for i in range(1, n + 1): result *= i end = timeit.default_timer() print(end - start) # Pirnts: 5.375011824071407e-06
可以看到,函数代码的执行速度比全局作用域代码要快
需要注意的是,这两段代码最好不要放在同一脚本中,要分开单独运行
这是因为
benchmark()
函数在执行时间上增加了一些开销,并且全局代码在内部进行了优化
cProfile 分析
python 提供了一个 cProfile
内置模块
让我们用它来分析一个新例子:在局部和全局范围内计算平方和
import cProfile def sum_of_squares(): total = 0 for i in range(1, 10000000): total += i * i i = None total = 0 def sum_of_squares_g(): global i global total for i in range(1, 10000000): total += i * i def profile(func): pr = cProfile.Profile() pr.enable() func() pr.disable() pr.print_stats() # # Profile function code # print("Function scope:") profile(sum_of_squares) # # Profile global scope code # print("Global scope:") profile(sum_of_squares_g)
上面的例子中,可以认为sum_of_squares_g()
函数是全局的,因为它使用了两个全局变量, i
和 total
从性能分析结果中,可以看到函数代码在执行时间方面比全局更有效
Function scope: 2 function calls in 0.903 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.903 0.903 0.903 0.903 profiler.py:3(sum_of_squares) 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} Global scope: 2 function calls in 1.358 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 1.358 1.358 1.358 1.358 profiler.py:10(sum_of_squares_g) 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
如何优化 python 函数的性能
前面我们知道,Python 代码在函数中运行往往比在全局范围内运行要快得多
如果想要进一步提高 python 函数代码效率,不妨考虑一下使用局部变量而不是全局变量
另一种方法是尽可能使用内置函数和库。Python 的内置函数是用 C 实现的,比 Python 快得多
比如 NumPy 和 Pandas,也是用 C 或 C++ 实现的,它们比实现同样功能的 Python 代码速度更快
又比如同样是实现数字求和的功能,python 内置的 sum
函数要比你自己编写函数速度更快
到此这篇关于为什么在函数中运行的 Python 代码速度更快?的文章就介绍到这了,更多相关函数中运行的 Python 代码速度块内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!