python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python雷达图

Python matplotlib实战之雷达图绘制

作者:databook

雷达图(Radar Chart),也被称为蛛网图或星型图,是一种用于可视化多个变量之间关系的图表形式,本文主要为大家介绍了如何使用Matplotlib绘制雷达图,需要的小伙伴可以参考下

雷达图(Radar Chart),也被称为蛛网图或星型图,是一种用于可视化多个变量之间关系的图表形式。

雷达图是一种显示多变量数据的图形方法。通常从同一中心点开始等角度间隔地射出三个以上的轴,每个轴代表一个定量变量,各轴上的点依次连接成线或几何图形。

雷达图可以用来在变量间进行对比,或者查看变量中有没有异常值。

雷达图中每个轴的相对位置和角度通常是无信息的。每个变量都具有自己的轴,彼此间的距离相等,所有轴都有相同的刻度。

在将数据映射到这些轴上时,需要注意预先对数值进行标准化处理,保证各个轴之间的数值比例能够做同级别的比较。

1. 主要元素

雷达图的主要元素包括:

2. 适用的场景

雷达图适用的分析场景包括:

3. 不适用的场景

雷达图不适用的分析场景有:

4. 分析实战

本次通过雷达图来分析下王者荣耀KPL联盟几位选手的比赛数据。

4.1. 数据来源

数据来自王者荣耀官网(2023年春季赛数据),整理好的数据可以从下面下载:https://databook.top/wzry/2023-spring

使用其中的文件:player-2023春季赛.csv

fp = "d:/share/data/player-2023春季赛.csv"
df = pd.read_csv(fp)
df

4.2. 数据清理

选手的数据一共有125条,本来想按胜率选择最高的4位选手,发现胜率高的选手很多只参加了1,2场比赛。

所以选择参加比赛最多6位选手来分析。

data = df.sort_values("比赛场次", ascending=False)
data = data.iloc[:6]
data

选择每位选手下列5个属性来绘制雷达图:

filter_cols = ["选手", "经济占比", "伤害占比", "承伤占比", "推塔占比", "参团率"]
data = data.loc[:, filter_cols]
data

将百分比数据转为数值类型:

for col in filter_cols[1:]:
    data[col] = data[col].str.replace("%", "", regex=False)
    data[col] = data[col].astype("float")
data

4.3. 分析结果可视化

绘制6位选手的雷达图:

N = 5 # 雷达图属性个数
angles = np.linspace(0, 2 * np.pi, N, endpoint=False)
angles = np.concatenate((angles, [angles[0]]))
fig = plt.figure(figsize=[10, 6])
for i in range(len(data)):
    values = data.iloc[i, 1:].tolist()
    values.append(values[0])
    position = "23" + str(i + 1)
    ax = fig.add_subplot(int(position), polar=True)
    ax.plot(angles, values, "o-")
    ax.fill(angles, values, alpha=0.4)
    ax.set_thetagrids(angles[:-1] * 180 / np.pi,
                      data.columns[1:].tolist())
    ax.set_title(data.iloc[i, 0], color="b")
    ax.set_ylim(0, 100)
plt.subplots_adjust(hspace=0.5)

参赛最多的6位选手,5位都是佛山DRG的队员,说明他们的首发阵容很稳定。

5个属性连接起来的面积,看起来还是射手打野的比较大,C位果然还是得看这两个位置。

以上就是Python matplotlib实战之雷达图绘制的详细内容,更多关于Python雷达图的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文