python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > matplotlib漏斗图

Python matplotlib实战之漏斗图绘制

作者:databook

漏斗图,形如“漏斗”,用于展示数据的逐渐减少或过滤过程,这篇文章主要为大家介绍了如何使用Matplotlib绘制漏斗图,需要的小伙伴可以参考下

漏斗图,形如“漏斗”,用于展示数据的逐渐减少或过滤过程。

它的起始总是最大,并在各个环节依次减少,每个环节用一个梯形来表示,整体形如漏斗。

一般来说,所有梯形的高度应是一致的,这会有助人们辨别数值间的差异。

需要注意的是,漏斗图的各个环节,有逻辑上的顺序关系。

同时,漏斗图的所有环节的流量都应该使用同一个度量。

通过漏斗图,可以较直观的看出流程中各部分的占比、发现流程中的问题,进而做出决策。

1. 主要元素

漏斗图的主要元素包括:

2. 适用的场景

漏斗图适用的分析场景包括:

3. 不适用的场景

然而,漏斗图并不适用于所有分析场景。以下是一些不适合使用漏斗图的情况:

4. 分析实战

本次用漏斗图分析各个学历的毕业生人数,从小学学历到博士学历。

4.1. 数据来源

数据来源国家统计局公开的数据,整理好的数据可从下面的地址下载:databook.top/nation/A0M

使用其中的文件:A0M0203.csv(各级各类学历教育毕业生数)

fp = "d:/share/data/A0M0203.csv"
df = pd.read_csv(fp)
df

4.2. 数据清理

漏斗图不需要时间序列数据,所以,只提取2021年的数据中从小学到博士的6种学历的毕业生人数。

data = df[df["sj"] == 2021]
#A0M020312: 普通小学毕业生数(万人)
#A0M02030T: 初中阶段教育毕业生数(万人)	
#A0M02030J: 普通高中毕业生数(万人)
#A0M020306: 普通本科毕业生数(万人)	
#A0M020304: 硕士毕业生数(万人)	
#A0M020303: 博士毕业生数(万人)
data = data[
    data["zb"].isin(
        [
            "A0M020312",
            "A0M02030T",
            "A0M02030J",
            "A0M020306",
            "A0M020304",
            "A0M020303",
        ]
    )
]
data = data.sort_values("value", ascending=False)
data

4.3. 分析结果可视化

with plt.style.context("dark_background"):
    fig = plt.figure()
    ax = fig.add_axes([0.1, 0.1, 1, 1])
    colors = plt.cm.Set2.colors
    cnt = len(data)
    y = [[1 + i * 3, 3.8 + i * 3] for i in range(cnt)]
    y_ticks = [2 + i * 3 for i in range(cnt)]
    start_x1 = 5
    start_x2 = -5
    for i in range(cnt):
        ax.fill_betweenx(
            y=y[i],
            x1=[start_x1, data.iloc[i, 4]],
            x2=[start_x2, -1 * data.iloc[i, 4]],
            color=colors[i],
        )
        start_x1 = data.iloc[i, 4]
        start_x2 = -1 * data.iloc[i, 4]
    ax.set_xticks([], [])
    ax.set_yticks(y_ticks, data["zbCN"])
    for y, value in zip(y_ticks, data["value"]):
        ax.text(
            10,
            y,
            value,
            fontsize=16,
            fontweight="bold",
            color="white",
            ha="center",
        )
    ax.grid(False)
    ax.set_title("2021年各学历毕业人数")

从图中可以看出,完成9年义务教育的比例很高。

初中到高中,人数几乎减半,而本科考研,硕士考博的人数比例更是锐减

到此这篇关于Python matplotlib实战之漏斗图绘制的文章就介绍到这了,更多相关matplotlib漏斗图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文