python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Keras深度学习模型

Keras深度学习模型Sequential和Model详解

作者:小锋学长生活大爆炸

这篇文章主要介绍了Keras深度学习模型Sequential和Model详解,在Keras中有两种深度学习的模型:序列模型(Sequential)和通用模型(Model),差异在于不同的拓扑结构,,需要的朋友可以参考下

Keras模型

在Keras中有两种深度学习的模型:序列模型(Sequential)和通用模型(Model)。

差异在于不同的拓扑结构。

Sequential序列模型

序列模型各层之间是依次顺序的线性关系(多个网络层的线性堆叠),模型结构通过一个列表来制定,或者逐层添加网络结构。

通过将网络层实例的列表传递给 Sequential 的构造器,来创建一个 Sequential 模型。

# 导入类
from keras.models import Sequential
from keras.layers import Dense, Activation
# 构建Sequential模型
# Model是keras最核心的数据结构
model = Sequential([
    Dense(32, input_shape=(784,)),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),
])

也可以简单地使用 .add() 方法将各层添加到模型中

model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))
model.add(Dense(10))
model.add(Activation('softmax'))

指定输入数据的尺寸 在第一层,模型需要知道它所期望的输入尺寸。

而在后面的层中,模型可以自动地推断尺寸。

因此,如下代码是等价的:

model.add(Dense(32, input_shape=(784,))
model.add(Dense(32, input_dim=784))

模型编译

在训练模型之前,通过 compile 方法配置学习过程,接收的参数:

# 分类问题
model.compile(
    optimizer='rmsprop',
    loss='categorical_crossentropy',
    metrics=['accuracy']
)
# 二分类问题
model.compile(
    optimizer='rmsprop',
    loss='binary_crossentropy',
    metrics=['accuracy']
)
# 均方误差回归问题
model.compile(
    optimizer='rmsprop',
    loss='mse'
)
# 自定义评估标准函数
import keras.backend as K
def mean_pred(y_true, y_pred):
    return K.mean(y_pred)
model.compile(
    optimizer='rmsprop',
    loss='binary_crossentropy',
    metrics=['accuracy', mean_pred]
)

模型训练

在输入数据和标签的Numpy矩阵上进行训练。为了训练这一个模型,通常会使用 fit 函数,见文档

# 对于具有2个类的单输入模型(二进制分类)
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
             loss='binary_crossentropy',
             metrics=['accuracy'])
# 生成虚拟数据
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))
# 训练模型,以32个样本为一个batch进行迭代
model.fit(data, labels, epochs=10, batch_size=32)
Epoch 1/10
1000/1000 [==============================] - 0s 105us/step - loss: 0.7028 - accuracy: 0.4980
Epoch 2/10
1000/1000 [==============================] - 0s 32us/step - loss: 0.6932 - accuracy: 0.5380
Epoch 3/10
1000/1000 [==============================] - 0s 34us/step - loss: 0.6862 - accuracy: 0.5510
Epoch 4/10
1000/1000 [==============================] - 0s 34us/step - loss: 0.6842 - accuracy: 0.5580
Epoch 5/10
1000/1000 [==============================] - 0s 31us/step - loss: 0.6834 - accuracy: 0.5570
Epoch 6/10
1000/1000 [==============================] - 0s 34us/step - loss: 0.6799 - accuracy: 0.5720
Epoch 7/10
1000/1000 [==============================] - 0s 34us/step - loss: 0.6760 - accuracy: 0.5860
Epoch 8/10
1000/1000 [==============================] - 0s 37us/step - loss: 0.6742 - accuracy: 0.5920
Epoch 9/10
1000/1000 [==============================] - 0s 35us/step - loss: 0.6702 - accuracy: 0.5810
Epoch 10/10
1000/1000 [==============================] - 0s 36us/step - loss: 0.6686 - accuracy: 0.6050
<keras.callbacks.callbacks.History at 0x1e1c574b888>

Model通用模型

通用模型可以设计非常复杂、任意拓扑结构的神经网络,例如有向无环网络、共享层网络等。

相比于序列模型只能依次线性逐层添加,通用模型能够比较灵活地构造网络结构,设定各层级的关系。

from keras.layers import Input, Dense
from keras.models import Model
# 定义输入层,确定输入维度
input = input(shape = (784, ))
# 2个隐含层,每个都有64个神经元,使用relu激活函数,且由上一层作为参数
x = Dense(64, activation='relu')(input)
x = Dense(64, activation='relu')(x)
# 输出层
y = Dense(10, activation='softmax')(x)
# 定义模型,指定输入输出
model = Model(input=input, output=y)
# 编译模型,指定优化器,损失函数,度量
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
# 模型拟合,即训练
model.fit(data, labels)

到此这篇关于Keras深度学习模型Sequential和Model详解的文章就介绍到这了,更多相关Keras深度学习模型内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文