python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Matplotlib堆叠面积图

Matplotlib实战之堆叠面积图绘制详解

作者:databook

堆叠面积图和面积图都是用于展示数据随时间变化趋势的统计图表,但它们的特点有所不同,堆叠面积图既能看到各数据系列的走势,又能看到整体的规模,下面我们就来看看如何绘制堆叠面积图吧

堆叠面积图和面积图都是用于展示数据随时间变化趋势的统计图表,但它们的特点有所不同。

面积图的特点在于它能够直观地展示数量之间的关系,而且不需要标注数据点,可以轻松地观察数据的变化趋势。而堆叠面积图则更适合展示多个数据系列之间的变化趋势,它们一层层的堆叠起来,每个数据系列的起始点是上一个数据系列的结束点,多数据列的展示更加直观和易于理解。

堆叠面积图观察几个数据系列随时间的变化情况时,既能看到各数据系列的走势,又能看到整体的规模,但是,过多的系列,也会导致难以分辨。

此外,堆叠面积图展示的数据一般会有时间上的关联,当数据没有时间上的关联时,建议适用堆叠柱状图。

1. 主要元素

堆叠面积图是一种用于展示数据分类、分组和数据关联性的图表,主要由以下几个元素组成:

2. 适用的场景

堆叠面积图适用于以下分析场景:

3. 不适用的场景

堆叠面积图不适用于以下分析场景:

4. 分析实战

这次使用三大产业的增加值来实战堆叠面积图的分析。

4.1. 数据来源

数据来源国家统计局公开数据,已经整理好的csv文件在:databook.top/nation/A02

本次分析使用其中的 A0201.csv 文件(国内生产总值数据)。

下面的文件路径 fp 要换成自己实际的文件路径。

fp = "d:/share/A0201.csv"
df = pd.read_csv(fp)
df

4.2. 数据清理

过滤出三大产业的数据:

key1 = "第一产业增加值(亿元)"
key2 = "第二产业增加值(亿元)"
key3 = "第三产业增加值(亿元)"
df = df[(df["zbCN"] == key1)
        | (df["zbCN"] == key2)
        | (df["zbCN"] == key3)]
df

4.3. 分析结果可视化

绘制三大产业的堆叠面积图:

from matplotlib.ticker import MultipleLocator
key1 = "第一产业增加值(亿元)"
key2 = "第二产业增加值(亿元)"
key3 = "第三产业增加值(亿元)"
val1 = df[(df["zbCN"] == key1)].sort_values("sj")
val2 = df[(df["zbCN"] == key2)].sort_values("sj")
val3 = df[(df["zbCN"] == key3)].sort_values("sj")
with plt.style.context("seaborn-v0_8"):
    fig = plt.figure()
    ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
    ax.xaxis.set_major_locator(MultipleLocator(4))
    ax.xaxis.set_minor_locator(MultipleLocator(2))
    ax.stackplot(
        val1["sjCN"],
        [val1["value"], val2["value"], val3["value"]],
        labels=[key1, key2, key3],
        alpha=0.8,
    )
    ax.legend(loc="upper left")

各个数据集在堆叠面积图中不会重合,所以不仅可以看出各个产业的增长情况,还能看出整体的增长主要来自哪个产业的影响。

从分析结果可以看出,我国的经济增长主要来自于第二,第三产业的增长。

这个结果和之前的文章中关于人口的分析也是相吻合的,在那个文章中,我们发现农业人口大量减少,城镇人口大量增加。

到此这篇关于Matplotlib实战之堆叠面积图绘制详解的文章就介绍到这了,更多相关Matplotlib堆叠面积图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文