python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python pytorch中.view()函数

python pytorch中.view()函数的用法解读

作者:Dust_Evc

这篇文章主要介绍了python pytorch中.view()函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教

python pytorch中.view()函数

在使用pytorch定义神经网络时,经常会看到类似如下的.view()用法,这里对其用法做出讲解与演示。

普通用法 (手动调整size)

view()相当于reshape、resize,重新调整Tensor的形状。

import torch
a1 = torch.arange(0,16)
print(a1)
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
a2 = a1.view(8, 2)
a3 = a1.view(2, 8)
a4 = a1.view(4, 4)
print(a2)
print(a3)
print(a4)
tensor([[ 0,  1],
        [ 2,  3],
        [ 4,  5],
        [ 6,  7],
        [ 8,  9],
        [10, 11],
        [12, 13],
        [14, 15]])
tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],
        [ 8,  9, 10, 11, 12, 13, 14, 15]])
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11],
        [12, 13, 14, 15]])

特殊用法:参数-1 (自动调整size)

view中一个参数定为-1,代表自动调整这个维度上的元素个数,以保证元素的总数不变。

import torch
a1 = torch.arange(0,16)
print(a1)
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
a2 = a1.view(-1, 16)
a3 = a1.view(-1, 8)
a4 = a1.view(-1, 4)
a5 = a1.view(-1, 2)
a6 = a1.view(4*4, -1)
a7 = a1.view(1*4, -1)
a8 = a1.view(2*4, -1)
print(a2)
print(a3)
print(a4)
print(a5)
print(a6)
print(a7)
print(a8)
tensor([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15]])
tensor([[ 0,  1,  2,  3,  4,  5,  6,  7],
        [ 8,  9, 10, 11, 12, 13, 14, 15]])
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11],
        [12, 13, 14, 15]])
tensor([[ 0,  1],
        [ 2,  3],
        [ 4,  5],
        [ 6,  7],
        [ 8,  9],
        [10, 11],
        [12, 13],
        [14, 15]])
tensor([[ 0],
        [ 1],
        [ 2],
        [ 3],
        [ 4],
        [ 5],
        [ 6],
        [ 7],
        [ 8],
        [ 9],
        [10],
        [11],
        [12],
        [13],
        [14],
        [15]])
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11],
        [12, 13, 14, 15]])
tensor([[ 0,  1],
        [ 2,  3],
        [ 4,  5],
        [ 6,  7],
        [ 8,  9],
        [10, 11],
        [12, 13],
        [14, 15]])

python中view()函数怎么用

初学者在使用pytorch框架定义神经网络时,经常会在代码中看到:

这样的用法。

view()的作用相当于numpy中的reshape,重新定义矩阵的形状。

例1 普通用法:

import torch
v1 = torch.range(1, 16) 
v2 = v1.view(4, 4)  

其中v1为1*16大小的张量,包含16个元素。v2为4*4大小的张量,同样包含16个元素。注意view前后的元素个数要相同,不然会报错。

例2 参数使用-1

import torch
v1 = torch.range(1, 16) 
v2 = v1.view(-1, 4)  

和图例中的用法一样,view中一个参数定为-1,代表动态调整这个维度上的元素个数,以保证元素的总数不变。因此两个例子的结果是相同的。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文