Python爬虫获取全网招聘数据实现可视化分析示例详解
作者:轻松学Python
这篇文章主要介绍了Python爬虫获取全网招聘数据实现可视化分析示例详解,实现采集一下最新的qcwu招聘数据,本文列举了部分代码以及实现思路,需要的朋友可以参考下
准备工作
软件工具
先来看看需要准备啥
环境使用
Python 3.8
Pycharm
模块使用
# 第三方模块 需要安装的 requests >>> pip install requests csv
实现爬虫基本流程
一、数据来源分析: 思路固定
1.明确需求: - 明确采集网站以及数据内容
- 网址: 51job
- 内容: 招聘信息
2.通过开发者工具, 进行抓包分析, 分析具体数据来源
- 打开开发者工具: F12 / 右键点击检查选择network
- 刷新网页, 让数据内容重新加载一遍
- 通过搜索<搜索你要的数据>去找数据具体位置
- 招聘信息数据包: https://we.***.com/api/job/search-pc?api_key=51job×tamp=1688645783&keyword=python&searchType=2&function=&industry=&jobArea=010000%2C020000%2C030200%2C040000%2C090200&jobArea2=&landmark=&metro=&salary=&workYear=°ree=&companyType=&companySize=&jobType=&issueDate=&sortType=0&pageNum=1&requestId=&pageSize=20&source=1&accountId=&pageCode=sou%7Csou%7Csoulb
二、代码实现步骤: 步骤固定
- 发送请求, 模拟浏览器对于url地址发送请求
请求链接: 招聘信息数据包url - 获取数据, 获取服务器返回响应数据 <所有的数据>
开发者工具: response - 解析数据, 提取我们想要的数据内容
招聘基本信息 - 保存数据, 把信息数据保存表格文件里面
代码解析
模块
# 导入数据请求模块 import requests # 导入格式化输出模块 from pprint import pprint # 导入csv import csv
- 发送请求, 模拟浏览器对于url地址发送请求
headers = { 'Cookie': 'guid=54b7a6c4c43a33111912f2b5ac6699e2; sajssdk_2015_cross_new_user=1; sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%2254b7a6c4c43a33111912f2b5ac6699e2%22%2C%22first_id%22%3A%221892b08f9d11c8-09728ce3464dad8-26031d51-3686400-1892b08f9d211e7%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E7%9B%B4%E6%8E%A5%E6%B5%81%E9%87%8F%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC_%E7%9B%B4%E6%8E%A5%E6%89%93%E5%BC%80%22%2C%22%24latest_referrer%22%3A%22%22%7D%2C%22identities%22%3A%22eyIkaWRlbnRpdHlfY29va2llX2lkIjoiMTg5MmIwOGY5ZDExYzgtMDk3MjhjZTM0NjRkYWQ4LTI2MDMxZDUxLTM2ODY0MDAtMTg5MmIwOGY5ZDIxMWU3IiwiJGlkZW50aXR5X2xvZ2luX2lkIjoiNTRiN2E2YzRjNDNhMzMxMTE5MTJmMmI1YWM2Njk5ZTIifQ%3D%3D%22%2C%22history_login_id%22%3A%7B%22name%22%3A%22%24identity_login_id%22%2C%22value%22%3A%2254b7a6c4c43a33111912f2b5ac6699e2%22%7D%2C%22%24device_id%22%3A%221892b08f9d11c8-09728ce3464dad8-26031d51-3686400-1892b08f9d211e7%22%7D; nsearch=jobarea%3D%26%7C%26ord_field%3D%26%7C%26recentSearch0%3D%26%7C%26recentSearch1%3D%26%7C%26recentSearch2%3D%26%7C%26recentSearch3%3D%26%7C%26recentSearch4%3D%26%7C%26collapse_expansion%3D; search=jobarea%7E%60010000%2C020000%2C030200%2C040000%2C090200%7C%21recentSearch0%7E%60010000%2C020000%2C030200%2C040000%2C090200%A1%FB%A1%FA000000%A1%FB%A1%FA0000%A1%FB%A1%FA00%A1%FB%A1%FA99%A1%FB%A1%FA%A1%FB%A1%FA99%A1%FB%A1%FA99%A1%FB%A1%FA99%A1%FB%A1%FA99%A1%FB%A1%FA9%A1%FB%A1%FA99%A1%FB%A1%FA%A1%FB%A1%FA0%A1%FB%A1%FApython%A1%FB%A1%FA2%A1%FB%A1%FA1%7C%21; privacy=1688644161; Hm_lvt_1370a11171bd6f2d9b1fe98951541941=1688644162; Hm_lpvt_1370a11171bd6f2d9b1fe98951541941=1688644162; JSESSIONID=BA027715BD408799648B89C132AE93BF; acw_tc=ac11000116886495592254609e00df047e220754059e92f8a06d43bc419f21; ssxmod_itna=Qqmx0Q0=K7qeqD5itDXDnBAtKeRjbDce3=e8i=Ax0vTYPGzDAxn40iDtrrkxhziBemeLtE3Yqq6j7rEwPeoiG23pAjix0aDbqGkPA0G4GG0xBYDQxAYDGDDPDocPD1D3qDkD7h6CMy1qGWDm4kDWPDYxDrjOKDRxi7DDvQkx07DQ5kQQGxjpBF=FHpu=i+tBDkD7ypDlaYj9Om6/fxMp7Ev3B3Ix0kl40Oya5s1aoDUlFsBoYPe723tT2NiirY6QiebnnDsAhWC5xyVBDxi74qTZbKAjtDirGn8YD===; ssxmod_itna2=Qqmx0Q0=K7qeqD5itDXDnBAtKeRjbDce3=e8i=DnIfwqxDstKhDL0iWMKV3Ekpun3DwODKGcDYIxxD==; acw_sc__v2=64a6bf58f0b7feda5038718459a3b1e625849fa8', 'Referer': 'https://we.51job.com/pc/search?jobArea=010000,020000,030200,040000,090200&keyword=python&searchType=2&sortType=0&metro=', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36', } # 请求链接 url = 'https://we.***.com/api/job/search-pc' # 请求参数 data = { 'api_key': '51job', 'timestamp': '*****', 'keyword': '****', 'searchType': '2', 'function': '', 'industry': '', 'jobArea': '010000,020000,030200,040000,090200', 'jobArea2': '', 'landmark': '', 'metro': '', 'salary': '', 'workYear': '', 'degree': '', 'companyType': '', 'companySize': '', 'jobType': '', 'issueDate': '', 'sortType': '0', 'pageNum': '1', 'requestId': '', 'pageSize': '20', 'source': '1', 'accountId': '', 'pageCode': 'sou|sou|soulb', } # 发送请求 response = requests.get(url=url, params=data, headers=headers)
- 获取数据
获取服务器返回响应数据 <所有的数据>
开发者工具: response
- response.json() 获取响应json数据
- 解析数据
提取我们想要的数据内容
for循环遍历
for index in response.json()['resultbody']['job']['items']: # index 具体岗位信息 --> 字典 dit = { '职位': index['jobName'], '公司': index['fullCompanyName'], '薪资': index['provideSalaryString'], '城市': index['jobAreaString'], '经验': index['workYearString'], '学历': index['degreeString'], '公司性质': index['companyTypeString'], '公司规模': index['companySizeString'], '职位详情页': index['jobHref'], '公司详情页': index['companyHref'], }
- 以字典方式进行数据保存
csv_writer.writerow(dit) print(dit)
- 保存表格
f = open('python.csv', mode='w', encoding='utf-8', newline='') csv_writer = csv.DictWriter(f, fieldnames=[ '职位', '公司', '薪资', '城市', '经验', '学历', '公司性质', '公司规模', '职位详情页', '公司详情页', ]) csv_writer.writeheader()
可视化部分
import pandas as pd df = pd.read_csv('data.csv') df.head() df['学历'] = df['学历'].fillna('不限学历') edu_type = df['学历'].value_counts().index.to_list() edu_num = df['学历'].value_counts().to_list() from pyecharts import options as opts from pyecharts.charts import Pie from pyecharts.faker import Faker from pyecharts.globals import CurrentConfig, NotebookType CurrentConfig.NOTEBOOK_TYPE = NotebookType.JUPYTER_LAB c = ( Pie() .add( "", [ list(z) for z in zip(edu_type,edu_num) ], center=["40%", "50%"], ) .set_global_opts( title_opts=opts.TitleOpts(title="Python学历要求"), legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"), ) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}")) ) c.load_javascript() c.render_notebook() df['城市'] = df['城市'].str.split('·').str[0] city_type = df['城市'].value_counts().index.to_list() city_num = df['城市'].value_counts().to_list() c = ( Pie() .add( "", [ list(z) for z in zip(city_type,city_num) ], center=["40%", "50%"], ) .set_global_opts( title_opts=opts.TitleOpts(title="Python招聘城市分布"), legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"), ) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}")) ) c.render_notebook() def LowMoney(i): if '万' in i: low = i.split('-')[0] if '千' in low: low_num = low.replace('千', '') low_money = int(float(low_num) * 1000) else: low_money = int(float(low) * 10000) else: low = i.split('-')[0] if '元/天' in low: low_num = low.replace('元/天', '') low_money = int(low_num) * 30 else: low_money = int(float(low) * 1000) return low_money df['最低薪资'] = df['薪资'].apply(LowMoney) def MaxMoney(j): Max = j.split('-')[-1].split('·')[0] if '万' in Max and '万/年' not in Max: max_num = int(float(Max.replace('万', '')) * 10000) elif '千' in Max: max_num = int(float(Max.replace('千', '')) * 1000) elif '元/天' in Max: max_num = int(Max.replace('元/天', '')) * 30 else: max_num = int((int(Max.replace('万/年', '')) * 10000) / 12) return max_num df['最高薪资'] = df['薪资'].apply(MaxMoney) def tranform_price(x): if x <= 5000.0: return '0~5000元' elif x <= 8000.0: return '5001~8000元' elif x <= 15000.0: return '8001~15000元' elif x <= 25000.0: return '15001~25000元' else: return '25000以上' df['最低薪资分级'] = df['最低薪资'].apply(lambda x:tranform_price(x)) price_1 = df['最低薪资分级'].value_counts() datas_pair_1 = [(i, int(j)) for i, j in zip(price_1.index, price_1.values)] df['最高薪资分级'] = df['最高薪资'].apply(lambda x:tranform_price(x)) price_2 = df['最高薪资分级'].value_counts() datas_pair_2 = [(i, int(j)) for i, j in zip(price_2.index, price_2.values)] pie1 = ( Pie(init_opts=opts.InitOpts(theme='dark',width='1000px',height='600px')) .add('', datas_pair_1, radius=['35%', '60%']) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")) .set_global_opts( title_opts=opts.TitleOpts( title="Python工作薪资\n\n最低薪资区间", pos_left='center', pos_top='center', title_textstyle_opts=opts.TextStyleOpts( color='#F0F8FF', font_size=20, font_weight='bold' ), ) ) .set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA']) ) pie1.render_notebook() pie1 = ( Pie(init_opts=opts.InitOpts(theme='dark',width='1000px',height='600px')) .add('', datas_pair_2, radius=['35%', '60%']) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%")) .set_global_opts( title_opts=opts.TitleOpts( title="Python工作薪资\n\n最高薪资区间", pos_left='center', pos_top='center', title_textstyle_opts=opts.TextStyleOpts( color='#F0F8FF', font_size=20, font_weight='bold' ), ) ) .set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA']) ) pie1.render_notebook() exp_type = df['经验'].value_counts().index.to_list() exp_num = df['经验'].value_counts().to_list() c = ( Pie() .add( "", [ list(z) for z in zip(exp_type,exp_num) ], center=["40%", "50%"], ) .set_global_opts( title_opts=opts.TitleOpts(title="Python招聘经验要求"), legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%", orient="vertical"), ) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}")) ) c.render_notebook() # 按城市分组并计算平均薪资 avg_salary = df.groupby('城市')['最低薪资'].mean() CityType = avg_salary.index.tolist() CityNum = [int(a) for a in avg_salary.values.tolist()] avg_salary_1 = df.groupby('城市')['最高薪资'].mean() CityType_1 = avg_salary_1.index.tolist() CityNum_1 = [int(a) for a in avg_salary_1.values.tolist()] from pyecharts.charts import Bar # 创建柱状图实例 c = ( Bar() .add_xaxis(CityType) .add_yaxis("", CityNum) .set_global_opts( title_opts=opts.TitleOpts(title="各大城市Python低平均薪资"), visualmap_opts=opts.VisualMapOpts( dimension=1, pos_right="5%", max_=30, is_inverse=True, ), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)) # 设置X轴标签旋转角度为45度 ) .set_series_opts( label_opts=opts.LabelOpts(is_show=False), markline_opts=opts.MarkLineOpts( data=[ opts.MarkLineItem(type_="min", name="最小值"), opts.MarkLineItem(type_="max", name="最大值"), opts.MarkLineItem(type_="average", name="平均值"), ] ), ) ) c.render_notebook() # 创建柱状图实例 c = ( Bar() .add_xaxis(CityType_1) .add_yaxis("", CityNum_1) .set_global_opts( title_opts=opts.TitleOpts(title="各大城市Python高平均薪资"), visualmap_opts=opts.VisualMapOpts( dimension=1, pos_right="5%", max_=30, is_inverse=True, ), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=45)) # 设置X轴标签旋转角度为45度 ) .set_series_opts( label_opts=opts.LabelOpts(is_show=False), markline_opts=opts.MarkLineOpts( data=[ opts.MarkLineItem(type_="min", name="最小值"), opts.MarkLineItem(type_="max", name="最大值"), opts.MarkLineItem(type_="average", name="平均值"), ] ), ) ) c.render_notebook() ### 结论: 1. 学历要求基本大专以上 2. 薪资待遇: 8000-25000 左右 3. 北上广 薪资偏高一些 ### 如何简单实现可视化分析 1. 通过爬虫采集完整的数据内容 --> 表格 / 数据库 2. 读取文件内容 3. 统计每个类目的数据情况 4. 通过可视化模块: <使用官方文档提供代码模板去实现> import pandas as pd # 读取数据 df = pd.read_csv('data.csv') # 显示前五行数据 df.head() c_type = df['公司性质'].value_counts().index.to_list() # 统计数据类目 c_num = df['公司性质'].value_counts().to_list() # 统计数据个数 c_type from pyecharts.charts import Bar # 导入pyecharts里面柱状图 from pyecharts.faker import Faker # 导入随机生成数据 from pyecharts.globals import ThemeType # 主题设置 c = ( Bar({"theme": ThemeType.MACARONS}) # 主题设置 .add_xaxis(c_type) # x轴数据 .add_yaxis("", c_num) # Y轴数据 .set_global_opts( # 标题显示 title_opts={"text": "Python招聘企业公司性质分布", "subtext": "民营', '已上市', '外资(非欧美)', '合资', '国企', '外资(欧美)', '事业单位'"} ) # 保存html文件 # .render("bar_base_dict_config.html") ) # print(Faker.choose()) # ['小米', '三星', '华为', '苹果', '魅族', 'VIVO', 'OPPO'] 数据类目 # print(Faker.values()) # [38, 54, 20, 85, 71, 22, 38] 数据个数 c.render_notebook() # 直接显示在jupyter上面
到此这篇关于Python爬虫获取全网招聘数据实现可视化分析示例详解的文章就介绍到这了,更多相关Python获取全网招聘数据内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!