python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python魔术方法

深入理解Python虚拟机中魔术方法的使用

作者:一无是处的研究僧

这篇文章主要给大家介绍在 cpython 当中一些比较花里胡哨的魔术方法,以帮助我们自己实现比较花哨的功能,当然这其中也包含一些也非常实用的魔术方法,需要的可以参考下

在本篇文章当中主要给大家介绍在 cpython 当中一些比较花里胡哨的魔术方法,以帮助我们自己实现比较花哨的功能,当然这其中也包含一些也非常实用的魔术方法。

深入分析 hash 方法

在 Python 中,__hash__() 方法是一种特殊方法(也称为魔术方法或双下划线方法),用于返回对象的哈希值。哈希值是一个整数,用于在字典(dict)和集合(set)等数据结构中进行快速查找和比较。__hash__() 方法在创建自定义的可哈希对象时非常有用,例如自定义类的实例,以便可以将这些对象用作字典的键或集合的元素。

下面是一些需要注意的问题和示例来帮助理解 __hash__() 方法:

import random
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    def __eq__(self, other):
        return self.name == other.name and self.age == other.age
    def __hash__(self):
        return hash((self.name, self.age)) + random.randint(0, 1024)
    def __repr__(self):
        return f"[name={self.name}, age={self.age}]"
person1 = Person("Alice", 25)
person2 = Person("Alice", 25)
print(hash(person1))  
print(hash(person2))  
container = set()
container.add(person1)
container.add(person2)
print(container)

在上面代码当中我们重写了 __hash__ 函数,但是对象的哈希值每次调用的时候我们都加入一个随机数,因此即使 name 和 age 都相等,如果 hash 值不想等,那么可能会造成容器当中存在多个相同的对象,上面的代码就会造成相同的对象,上面的程序输出结果如下所示:

1930083569156318318
1930083569156318292
{[name=Alice, age=25], [name=Alice, age=25]}

如果重写上面的类对象:

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    def __eq__(self, other):
        return self.name == other.name and self.age == other.age
    def __hash__(self):
        return hash((self.name, self.age))
    def __repr__(self):
        return f"[name={self.name}, age={self.age}]"

那么容器器当中只会有一个对象。

如果我们只重写了 __hash__方法的时候也会造成容器当中有多个相同的对象。

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    # def __eq__(self, other):
    #     return self.name == other.name and self.age == other.age
    def __hash__(self):
        return hash((self.name, self.age)) # + random.randint(0, 1024)
    def __repr__(self):
        return f"[name={self.name}, age={self.age}]"

这是因为如果哈希值相同的时候还需要在比较两个对象是否相等,如果相等那么就不需要将这个对象保存到容器当中,如果不相等那么将会将这个对象加入到容器当中。

bool 方法

在 Python 中,object.__bool__() 方法是一种特殊方法,用于定义对象的布尔值。它在使用布尔运算符(如 if 语句和逻辑运算)时自动调用。__bool__() 方法应该返回一个布尔值,表示对象的真值。如果 __bool__() 方法未定义,Python 将尝试调用 __len__() 方法来确定对象的真值。如果 __len__() 方法返回零,则对象被视为假;否则,对象被视为真。

下面是一些需要注意的事项来帮助理解 __bool__() 方法:

下面是一个示例,展示了如何在自定义类中使用 __bool__() 方法:

class NonEmptyList:
    def __init__(self, items):
        self.items = items
    def __bool__(self):
        return len(self.items) > 0
my_list = NonEmptyList([1, 2, 3])
if my_list:
    print("The list is not empty.")
else:
    print("The list is empty.")

对象的属性访问

在Python中,我们可以通过一些特殊方法来定制属性访问的行为。本文将深入介绍这些特殊方法,包括__getitem__()、__setitem__()、__delitem__()和__getattr__()方法,以帮助更好地理解属性访问的机制和应用场景。

__getitem__()方法是用于索引操作的特殊方法。当我们通过索引访问对象的属性时,Python会自动调用该方法,并传入索引值作为参数。我们可以在该方法中实现对属性的获取操作,并返回相应的值。

class MyList:
    def __init__(self):
        self.data = []
    def __getitem__(self, index):
        return self.data[index]
my_list = MyList()
my_list.data = [1, 2, 3]
print(my_list[1])  # 输出: 2

在上面的例子中,我们定义了一个名为MyList的类,它具有一个属性data,该属性是一个列表。通过重写__getitem__()方法,我们使得可以通过索引来访问MyList对象的data属性。当我们使用my_list[1]的形式进行索引操作时,Python会自动调用__getitem__()方法,并将索引值1作为参数传递给该方法。

__setitem__()方法用于属性的设置操作,即通过索引为对象的属性赋值。当我们使用索引操作并赋值给对象的属性时,Python会自动调用__setitem__()方法,并传入索引值和赋值的值作为参数。

class MyList:
    def __init__(self):
        self.data = [0 for i in range(2)]
    def __setitem__(self, index, value):
        self.data[index] = value
my_list = MyList()
my_list[0] = 1
my_list[1] = 2
print(my_list.data)  # 输出: [1, 2]

在上述示例中,我们重写了__setitem__()方法来实现对对象属性的设置操作。当我们执行my_list[0] = 1和my_list[1] = 2的赋值操作时,Python会自动调用__setitem__()方法,并将索引值和赋值的值传递给该方法。在__setitem__()方法中,我们将值赋给了对象的data属性的相应索引位置。

__delitem__()方法用于删除对象属性的特殊方法。当我们使用del语句删除对象属性时,Python会自动调用__delitem__()方法,并传入要删除的属性的索引值作为参数。

class MyDict:
    def __init__(self):
        self.data = dict()
    def __delitem__(self, key):
        print("In __delitem__")
        del self.data[key]
obj = MyDict()
obj.data["key"] = "val"
del obj["key"] # 输出 In __delitem__

__getattr__() 是一个特殊方法,用于在访问不存在的属性时自动调用。它接收一个参数,即属性名,然后返回相应的值或引发 AttributeError 异常。

class MyClass:
    def __getattr__(self, name):
        if name == 'color':
            return 'blue'
        else:
            raise AttributeError(f"'MyClass' object has no attribute '{name}'")
my_obj = MyClass()
print(my_obj.color)  # 输出: blue
print(my_obj.size)   # 引发 AttributeError: 'MyClass' object has no attribute 'size'

在上面的示例中,当访问 my_obj.color 时,由于 color 属性不存在,Python 会自动调用 __getattr__() 方法,并返回预定义的值 'blue'。而当访问 my_obj.size 时,由于该属性也不存在,__getattr__() 方法会引发 AttributeError 异常。

__setattr__() 是一个特殊方法,用于在设置属性值时自动调用。它接收两个参数,即属性名和属性值。我们可以在该方法中对属性进行处理、验证或记录。

class MyClass:
    def __init__(self):
        self.color = 'red' # 输出:Setting attribute 'color' to 'red'
    def __setattr__(self, name, value):
        print(f"Setting attribute '{name}' to '{value}'")
        super().__setattr__(name, value)
my_obj = MyClass()
my_obj.color = 'blue'  # 输出: Setting attribute 'color' to 'blue'

当我们使用 . 的方式去访问对象属性的时候,首先会调用对象的 __getattribute__ 函数,如果属性不存在才会调用 __getattr__。当 __getattribute__ 方法无法找到指定的属性时,Python 会调用 __getattr__ 方法。以下是在之前的示例类 CustomClass 上添加 __getattr__ 方法的代码:

class CustomClass:
    def __init__(self):
        self.attribute = "Hello, world!"
    def __getattribute__(self, name):
        print(f"Accessing attribute: {name}")
        return super().__getattribute__(name)
    def __getattr__(self, name):
        print(f"Attribute {name} not found")
        return None

在这个示例中,我们在 CustomClass 中添加了 __getattr__ 方法。当 __getattribute__ 方法无法找到指定的属性时,会自动调用 __getattr__ 方法,并打印出属性名称 "attribute" 以及未找到属性的提示信息。

我们执行下面的代码:

obj = CustomClass()
print(obj.attribute)
print(obj.nonexistent_attribute)

输出结果如下所示:

Accessing attribute: attribute
Hello, world!
Accessing attribute: nonexistent_attribute
Attribute nonexistent_attribute not found
None

首先,我们访问存在的属性 attribute,此时 __getattribute__ 方法被调用,并打印出属性名称 "attribute",然后返回属性的实际值 "Hello, world!"。接着,我们尝试访问不存在的属性 nonexistent_attribute,由于 __getattribute__ 方法无法找到该属性,因此会调用 __getattr__ 方法,并打印出属性名称 "nonexistent_attribute" 以及未找到属性的提示信息,然后返回 None。

上下文管理器

当我们需要在特定的代码块执行前后进行一些操作时,上下文管理器是一种非常有用的工具。上下文管理器可以确保资源的正确分配和释放,无论代码块是否出现异常。在Python中,我们可以通过实现 __enter__ 和 __exit__ 方法来创建自定义的上下文管理器。

下面是一个简单的上下文管理器示例,展示了如何使用 object.__enter__ 和 object.__exit__ 方法来创建一个文件操作的上下文管理器:

class FileContextManager:
    def __init__(self, filename, mode):
        self.filename = filename
        self.mode = mode
        self.file = None
    def __enter__(self):
        self.file = open(self.filename, self.mode)
        return self.file
    def __exit__(self, exc_type, exc_value, traceback):
        self.file.close()
with FileContextManager('example.txt', 'w') as file:
    file.write('Hello, world!')

在上述示例中,FileContextManager 类实现了 __enter__ 和 __exit__ 方法。在 __enter__ 方法中,我们打开文件并返回文件对象,这样在 with 语句块中就可以使用该文件对象。在 __exit__ 方法中,我们关闭文件。

无论代码块是否抛出异常,__exit__ 方法都会被调用来确保文件被正确关闭。这样可以避免资源泄露和文件锁定等问题。使用上下文管理器可以简化代码,并提供一致的资源管理方式,特别适用于需要打开和关闭资源的情况,如文件操作、数据库连接等。

上述上下文管理器的 __exit__ 方法有三个参数:exc_type、exc_value 和 traceback。下面是对这些参数的详细介绍:

以上就是深入理解Python虚拟机中魔术方法的使用的详细内容,更多关于Python魔术方法的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文