YOLO v5引入解耦头部完整步骤
作者:小啊磊_Runing
网上有很多添加解耦头的博客,在此记录下我使用解耦头对YOLOv5改进,下面这篇文章主要给大家介绍了关于YOLO v5引入解耦头部的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
前言
在 YOLO x中,使用了解耦头部的方法,从而加快网络收敛速度和提高精度,因此解耦头被广泛应用于目标检测算法任务中。因此也想在YOLO v5的检测头部引入了解耦头部的方法,从而来提高检测精度和加快网络收敛,但这里与 YOLO x 解耦头部使用的检测方法稍微不同,在YOLO v5中引入的解耦头部依旧还是基于 anchor 检测的方法。
一、解耦头部示意图
在YOLO x中,使用了解耦头部的方法,具体论文请参考:https://arxiv.org/pdf/2107.08430.pdf
于是按照论文中的介绍就可以简单的画出解耦头部,在YOLO v5中引入的解耦头部最终还是基于 anchor 检测的方法。
二、在YOLO v5 中引入解耦头部
1.修改common.py文件
在common.py文件中加入以下代码。
class DecoupledHead(nn.Module): def __init__(self, ch=256, nc=80, anchors=()): super().__init__() self.nc = nc # number of classes self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.merge = Conv(ch, 256, 1, 1) self.cls_convs1 = Conv(256, 256, 3, 1, 1) self.cls_convs2 = Conv(256, 256, 3, 1, 1) self.reg_convs1 = Conv(256, 256, 3, 1, 1) self.reg_convs2 = Conv(256, 256, 3, 1, 1) self.cls_preds = nn.Conv2d(256, self.nc * self.na, 1) self.reg_preds = nn.Conv2d(256, 4 * self.na, 1) self.obj_preds = nn.Conv2d(256, 1 * self.na, 1) def forward(self, x): x = self.merge(x) x1 = self.cls_convs1(x) x1 = self.cls_convs2(x1) x1 = self.cls_preds(x1) x2 = self.reg_convs1(x) x2 = self.reg_convs2(x2) x21 = self.reg_preds(x2) x22 = self.obj_preds(x2) out = torch.cat([x21, x22, x1], 1) return out
2.修改yolo.py文件
修改后common.py文件后,需要修改yolo.py文件,主要修改两个部分:
1.在model函数,只需修改一句代码,修改后如下:
if isinstance(m, Detect) or isinstance(m, Decoupled_Detect):
2.在parse_model函数中,修改后代码如下:
3.在yolo.py增加Decoupled_Detect代码
class Decoupled_Detect(nn.Module): stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter export = False # export mode def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors self.grid = [torch.zeros(1)] * self.nl # init grid self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) self.m = nn.ModuleList(DecoupledHead(x, nc, anchors) for x in ch) self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) y = x[i].sigmoid() if self.inplace: y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i] # xy y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0 xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, conf), 4) z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x) def _make_grid(self, nx=20, ny=20, i=0): d = self.anchors[i].device t = self.anchors[i].dtype shape = 1, self.na, ny, nx, 2 # grid shape y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t) if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility yv, xv = torch.meshgrid(y, x, indexing='ij') else: yv, xv = torch.meshgrid(y, x) grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5 anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape) return grid, anchor_grid
3.在model函数中,修改Build strides, anchors部分代码,修改后代码如下:
# Build strides, anchors m = self.model[-1] # Detect() if isinstance(m, Detect) or isinstance(m, Decoupled_Detect): s = 256 # 2x min stride m.inplace = self.inplace m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward check_anchor_order(m) # must be in pixel-space (not grid-space) m.anchors /= m.stride.view(-1, 1, 1) self.stride = m.stride # self._initialize_biases() # only run once try : self._initialize_biases() # only run once LOGGER.info('initialize_biases done') except : LOGGER.info('decoupled no biase ') initialize_weights(self) self.info() LOGGER.info('')
3.修改模型的yaml文件
在模型的yaml文件中,修改最后一层检测的头的结构,我修改yolo v5s模型的最后一层检测结构如下:
[[17, 20, 23], 1, Decoupled_Detect, [nc, anchors]], # Detect(P3, P4, P5)
总结
至于单独的增加解耦头部,我还没有对自己的数据集进行单独的训练,一般都是解耦头部和其他模型结合在一起进行训练,如果后期在训练的时候map有提升的话,我在把实验结果放在上面,最近也在跑实验结果对比。
到此这篇关于YOLO v5引入解耦头部的文章就介绍到这了,更多相关YOLO v5引入解耦头部内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!