pytorch rpc实现分物理机器实现model parallel的过程详解
作者:UnknownBody
因为业务需要,最近接到一项任务,是如何利用pytorch实现model parallel以及distributed training。搜罗了网上很多资料,以及阅读了pytorch官方的教程,都没有可参考的案例。讲的比较多的是data parallel,关于model parallel的研究发现不多。
通过阅读pytorch官方主页,发现这个example是进行model parallel的,
官方博客地址:DISTRIBUTED PIPELINE PARALLELISM USING RPC
官方的example地址:Distributed Pipeline Parallel Example
通过阅读代码发现,这个代码以Resnet 50 model为例,将model直接拆分成两部分,并指定两部分在不同的worker运行,代码实现了在同一台机器上,创建多进程来拆分模型运行。关于这个代码的详细介绍可搜索关键词:pytorch RPC 的分布式管道并行,这里不多介绍。
通过在本地运行代码发现,不满足多机器运行的需求。接下来是思考的心路里程。
1.首先通过代码发现,python main.py程序运行时,无法指定rank,那么在跨机器运行时如何知道哪台机器是worker1,worker2?这个地方,我们首先怀疑需要去修改worker,人为在代码中指定worker的IP地址,如修改main.py 代码中191行
修改前:model = DistResNet50(split_size, ["worker1", "worker2"])
修改后:model = DistResNet50(split_size, ["worker1@xxx.xxx.xxx.xxx", "worker2@xxx.xxx.xxx.xxx"])
然后,很自然的就报错了,这里无法识别这样的worker名,不支持直接指定,这条路也就走不通了。
2.接着只能重新阅读代码,到最后251行,我们发现mp.spawn(run_worker, args=(world_size, num_split), nprocs=world_size, join=True)
尤其是这行代码中mp.spawn
引起了我们的怀疑,这不是多进程么,这本质还是在多进程情况下来执行程序,无法跨机器啊,不符合我们的需求。
3.最后的最后,我们重新阅读pytorch rpc机制,并通过简单测试程序,让两台机器互相通信,其中一台机器发起运算请求并传输原始数据,另外一台机器负责接收数据并进行相关运算,这个程序当时在两台物理机器上测试成功了,那说明rpc实现通信这件事并不复杂。结合前面给的代码,我们决定将worke1和worker2分开写代码,分开执行,并且在代码中需要指定这些worker所属的rank,这样理论上就能够将原始代码修改成分机器的rpc通信运行了。
上面主要是我们的心理历程,话不多说,接下来show the code。
实验环境,两台机器,均是cpu环境,conda安装的环境也保证了一致。
master机器代码:
# https://github.com/pytorch/examples/blob/main/distributed/rpc/pipeline/main.py import os import threading import time import torch import torch.nn as nn import torch.distributed.autograd as dist_autograd import torch.distributed.rpc as rpc import torch.optim as optim from torch.distributed.optim import DistributedOptimizer from torch.distributed.rpc import RRef from torchvision.models.resnet import Bottleneck os.environ['MASTER_ADDR'] = 'XXX.XXX.XXX.XXX' # 指定master ip地址 os.environ['MASTER_PORT'] = '7856' # 指定master 端口号 ######################################################### # Define Model Parallel ResNet50 # ######################################################### # In order to split the ResNet50 and place it on two different workers, we # implement it in two model shards. The ResNetBase class defines common # attributes and methods shared by two shards. ResNetShard1 and ResNetShard2 # contain two partitions of the model layers respectively. num_classes = 1000 def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class ResNetBase(nn.Module): def __init__(self, block, inplanes, num_classes=1000, groups=1, width_per_group=64, norm_layer=None): super(ResNetBase, self).__init__() self._lock = threading.Lock() self._block = block self._norm_layer = nn.BatchNorm2d self.inplanes = inplanes self.dilation = 1 self.groups = groups self.base_width = width_per_group def _make_layer(self, planes, blocks, stride=1): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if stride != 1 or self.inplanes != planes * self._block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * self._block.expansion, stride), norm_layer(planes * self._block.expansion), ) layers = [] layers.append(self._block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * self._block.expansion for _ in range(1, blocks): layers.append(self._block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def parameter_rrefs(self): r""" Create one RRef for each parameter in the given local module, and return a list of RRefs. """ return [RRef(p) for p in self.parameters()] class ResNetShard1(ResNetBase): """ The first part of ResNet. """ def __init__(self, device, *args, **kwargs): super(ResNetShard1, self).__init__( Bottleneck, 64, num_classes=num_classes, *args, **kwargs) self.device = device self.seq = nn.Sequential( nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False), self._norm_layer(self.inplanes), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), self._make_layer(64, 3), self._make_layer(128, 4, stride=2) ).to(self.device) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) def forward(self, x_rref): x = x_rref.to_here().to(self.device) with self._lock: out = self.seq(x) return out.cpu() class ResNetShard2(ResNetBase): """ The second part of ResNet. """ def __init__(self, device, *args, **kwargs): super(ResNetShard2, self).__init__( Bottleneck, 512, num_classes=num_classes, *args, **kwargs) self.device = device self.seq = nn.Sequential( self._make_layer(256, 6, stride=2), self._make_layer(512, 3, stride=2), nn.AdaptiveAvgPool2d((1, 1)), ).to(self.device) self.fc = nn.Linear(512 * self._block.expansion, num_classes).to(self.device) def forward(self, x_rref): x = x_rref.to_here().to(self.device) with self._lock: out = self.fc(torch.flatten(self.seq(x), 1)) return out.cpu() class DistResNet50(nn.Module): """ Assemble two parts as an nn.Module and define pipelining logic """ def __init__(self, split_size, workers, *args, **kwargs): super(DistResNet50, self).__init__() self.split_size = split_size # Put the first part of the ResNet50 on workers[0] self.p1_rref = rpc.remote( workers[0], ResNetShard1, args = ("cuda:0",) + args, kwargs = kwargs ) # Put the second part of the ResNet50 on workers[1] self.p2_rref = rpc.remote( workers[1], ResNetShard2, args = ("cpu",) + args, kwargs = kwargs ) def forward(self, xs): # Split the input batch xs into micro-batches, and collect async RPC # futures into a list out_futures = [] for x in iter(xs.split(self.split_size, dim=0)): x_rref = RRef(x) y_rref = self.p1_rref.remote().forward(x_rref) print(y_rref) z_fut = self.p2_rref.rpc_async().forward(y_rref) print(z_fut) out_futures.append(z_fut) # collect and cat all output tensors into one tensor. return torch.cat(torch.futures.wait_all(out_futures)) def parameter_rrefs(self): remote_params = [] remote_params.extend(self.p1_rref.remote().parameter_rrefs().to_here()) remote_params.extend(self.p2_rref.remote().parameter_rrefs().to_here()) return remote_params ######################################################### # Run RPC Processes # ######################################################### num_batches = 3 batch_size = 8 image_w = 128 image_h = 128 if __name__=="__main__": options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=256, rpc_timeout=300) # 初始化主节点的RPC连接 rpc.init_rpc("master", rank=0, world_size=2, rpc_backend_options=options) for num_split in [1,2]: tik = time.time() model = DistResNet50(num_split, ["master", "worker"]) loss_fn = nn.MSELoss() opt = DistributedOptimizer( optim.SGD, model.parameter_rrefs(), lr=0.05, ) one_hot_indices = torch.LongTensor(batch_size) \ .random_(0, num_classes) \ .view(batch_size, 1) for i in range(num_batches): print(f"Processing batch {i}") # generate random inputs and labels inputs = torch.randn(batch_size, 3, image_w, image_h) labels = torch.zeros(batch_size, num_classes) \ .scatter_(1, one_hot_indices, 1) with dist_autograd.context() as context_id: outputs = model(inputs) dist_autograd.backward(context_id, [loss_fn(outputs, labels)]) opt.step(context_id) tok = time.time() print(f"number of splits = {num_split}, execution time = {tok - tik}") # 关闭RPC连接 rpc.shutdown()
worker端的代码
# https://github.com/pytorch/examples/blob/main/distributed/rpc/pipeline/main.py import os import threading import time from functools import wraps import torch import torch.nn as nn import torch.distributed.rpc as rpc from torch.distributed.rpc import RRef from torchvision.models.resnet import Bottleneck os.environ['MASTER_ADDR'] = 'XXX.XXX.XXX.XXX' # 指定master 端口号 os.environ['MASTER_PORT'] = '7856' # 指定master 端口号 ######################################################### # Define Model Parallel ResNet50 # ######################################################### # In order to split the ResNet50 and place it on two different workers, we # implement it in two model shards. The ResNetBase class defines common # attributes and methods shared by two shards. ResNetShard1 and ResNetShard2 # contain two partitions of the model layers respectively. num_classes = 1000 def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class ResNetBase(nn.Module): def __init__(self, block, inplanes, num_classes=1000, groups=1, width_per_group=64, norm_layer=None): super(ResNetBase, self).__init__() self._lock = threading.Lock() self._block = block self._norm_layer = nn.BatchNorm2d self.inplanes = inplanes self.dilation = 1 self.groups = groups self.base_width = width_per_group def _make_layer(self, planes, blocks, stride=1): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if stride != 1 or self.inplanes != planes * self._block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * self._block.expansion, stride), norm_layer(planes * self._block.expansion), ) layers = [] layers.append(self._block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * self._block.expansion for _ in range(1, blocks): layers.append(self._block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def parameter_rrefs(self): r""" Create one RRef for each parameter in the given local module, and return a list of RRefs. """ return [RRef(p) for p in self.parameters()] class ResNetShard2(ResNetBase): """ The second part of ResNet. """ def __init__(self, device, *args, **kwargs): super(ResNetShard2, self).__init__( Bottleneck, 512, num_classes=num_classes, *args, **kwargs) self.device = device self.seq = nn.Sequential( self._make_layer(256, 6, stride=2), self._make_layer(512, 3, stride=2), nn.AdaptiveAvgPool2d((1, 1)), ).to(self.device) self.fc = nn.Linear(512 * self._block.expansion, num_classes).to(self.device) def forward(self, x_rref): x = x_rref.to_here().to(self.device) print(x) with self._lock: out = self.fc(torch.flatten(self.seq(x), 1)) return out.cpu() ######################################################### # Run RPC Processes # ######################################################### if __name__=="__main__": options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=256, rpc_timeout=300) # 初始化工作节点的RPC连接 rpc.init_rpc("worker", rank=1, world_size=2, rpc_backend_options=options) # 等待主节点的调用 rpc.shutdown()
代码中的MASTER_ADDR和port需要指定为一致,分别在master机器上运行master.py,worker机器上运行worker.py,这样就可以实现Resnet 50 model在两台物理机器上model parallel。
注意事项
- 确保物理机器能够互相ping通,同时关闭防火墙
- 两个物理机器最好都是linux环境,我们的实验发现pytorch的分布式不支持在Windows环境运行
- 两个物理机器的python运行环境要求保持一致
到此这篇关于pytorch rpc如何实现分物理机器实现model parallel的文章就介绍到这了,更多相关pytorch rpc实现model parallel内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!