python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python NumPy数组排序与过滤

Python NumPy实现数组排序与过滤示例分析讲解

作者:魔王不会哭

NumPy是Python的一种开源的数值计算扩展,它支持大量的维度数组与矩阵运算,这篇文章主要介绍了使用NumPy实现数组排序与过滤的方法,需要的朋友们下面随着小编来一起学习吧

数组排序

排序是指将元素按有序顺序排列。

有序序列是拥有与元素相对应的顺序的任何序列,例如数字或字母、升序或降序。

NumPy ndarray 对象有一个名为 sort() 的函数,该函数将对指定的数组进行排序。

实例

对数组进行排序:

import numpy as np
arr = np.array([3, 2, 0, 1])
print(np.sort(arr))

运行实例

注释:此方法返回数组的副本,而原始数组保持不变。

您还可以对字符串数组或任何其他数据类型进行排序:

实例

对数组以字母顺序进行排序:

import numpy as np
arr = np.array(['banana', 'cherry', 'apple'])
print(np.sort(arr))

运行实例

实例

对布尔数组进行排序:

import numpy as np
arr = np.array([True, False, True])
print(np.sort(arr))
运行实例

对2-D数组排序

如果在二维数组上使用 sort() 方法,则将对两个数组进行排序:

实例

对 2-D 数组排序

import numpy as np
arr = np.array([[3, 2, 4], [5, 0, 1]])
print(np.sort(arr))

运行实例

数组过滤

从现有数组中取出一些元素并从中创建新数组称为过滤(filtering)。

在 NumPy 中,我们使用布尔索引列表来过滤数组。

布尔索引列表是与数组中的索引相对应的布尔值列表。

如果索引处的值为 True,则该元素包含在过滤后的数组中;如果索引处的值为 False,则该元素将从过滤后的数组中排除。

实例

用索引 0 和 2、4 上的元素创建一个数组:

import numpy as np
arr = np.array([61, 62, 63, 64, 65])
x = [True, False, True, False, True]
newarr = arr[x]
print(newarr)

运行实例

上例将返回 [61, 63, 65],为什么?

因为新过滤器仅包含过滤器数组有值 True 的值,所以在这种情况下,索引为 0 和 2、4。

创建过滤器数组

在上例中,我们对 True 和 False 值进行了硬编码,但通常的用途是根据条件创建过滤器数组。

实例

创建一个仅返回大于 62 的值的过滤器数组:

import numpy as np
arr = np.array([61, 62, 63, 64, 65])
# 创建一个空列表
filter_arr = []
# 遍历 arr 中的每个元素
for element in arr:
  # 如果元素大于 62,则将值设置为 True,否则为 False:
  if element > 62:
    filter_arr.append(True)
  else:
    filter_arr.append(False)
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)

运行实例

实例

创建一个过滤器数组,该数组仅返回原始数组中的偶数元素:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
# 创建一个空列表
filter_arr = []
# 遍历 arr 中的每个元素
for element in arr:
  # 如果元素可以被 2 整除,则将值设置为 True,否则设置为 False
  if element % 2 == 0:
    filter_arr.append(True)
  else:
    filter_arr.append(False)
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)

运行实例

直接从数组创建过滤器

上例是 NumPy 中非常常见的任务,NumPy 提供了解决该问题的好方法。

我们可以在条件中直接替换数组而不是 iterable 变量,它会如我们期望地那样工作。

实例

创建一个仅返回大于 62 的值的过滤器数组:

import numpy as np
arr = np.array([61, 62, 63, 64, 65])
filter_arr = arr > 62
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)

运行实例

实例

创建一个过滤器数组,该数组仅返回原始数组中的偶数元素:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
filter_arr = arr % 2 == 0
newarr = arr[filter_arr]
print(filter_arr)
print(newarr)

运行实例

到此这篇关于Python NumPy实现数组排序与过滤示例分析讲解的文章就介绍到这了,更多相关Python NumPy数组排序与过滤内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文