C/C++实现H264文件解析
作者:静止了 所有的花开
这篇文章主要为大家详细介绍了如何通过C++实现H264文件以及一段H264码流解析,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
H264视频编码格式简介
H264是视频压缩编码标准。视频⽂件的传输是⼀个极⼤的问题:⼀段分辨率为19201080的视频,每个像素点为RGB占⽤3个字节,帧率是25的视频,对于传输带宽的要求是:192010803*25/1024/1024=148.315MB/s,换成bps则意味着视频每秒带宽为1186.523Mbps,这样的速率对于⽹络存储是不可接受的。因此视频压缩和编码技术应运⽽⽣。
H264码流分析
通常我们使用H264码流分析工具时,我们会发现H264码流是由连续的帧组成的,一组连续的帧成为1个GOP即1组,对于1个GOP来说,通常包括SPS(序列参数集,编码视频序列的全局参数)PPS(图像参数集,⼀个序列中某⼀幅图像或者某⼏幅图像的参数),IDR帧(第一个出现的I帧成为IDR帧,1个GOP中通常只包含1个IDR帧),P帧(GOP中剩余帧基本都是P帧);GOP描述如下:

H264码流结构如图:

C/C++ H264文件解析
C++实现H264文件以及一段H264码流解析,源码如下:
h264Parse.h:
#ifndef _H264PARSE_H_
#define _H264PARSE_H_
#include <fstream>
class H264Parse
{
public:
int open_file(const std::string &filename);
/**
* @brief 从文件中读取一个nalu,包含起始码
* @param buf 存放nalu的缓冲区
* @param size 缓冲区大小
* @param len nalu的长度
* @param n 每次读取多少个字节
* @return -1 失败 0 已到文件末尾 1 成功获取到一个nalu
*/
int read_nalu(uint8_t *buf, uint32_t size, uint32_t &len, uint32_t n);
void close_file();
// 获取起始码长度
static int get_startCode_len(const uint8_t *ptr);
static const uint8_t *find_startCode_pos(const uint8_t *buf, uint32_t len);
/**
* @brief 从一段h264码流中分割nalu,包含起始码
* @param stream h264码流
* @param streamLen 码流大小
* @param nalu Pointer to the extracted nalu
* @param naluLen nalu的长度
* @param record Pointer用于记录状态,第一次分割时把 *record 赋值为NULL
* @return -1 失败 0 已分割完 1 成功获取到一个nalu
*/
static int nalu_tok(const uint8_t *stream, uint32_t streamLen, const uint8_t **nalu,
uint32_t &naluLen, const uint8_t **record);
private:
std::fstream h264File;
int read_start_code(uint8_t *buf);
int adjust_filePointer_pos(uint32_t totalRead, uint32_t naluLen);
};
#endif // _H264PARSE_H_h264Parse.cpp:
#include "h264Parse.h"
#include <iostream>
#include <cstring>
int H264Parse::open_file(const std::string &filename)
{
h264File.open(filename, std::ios::in | std::ios::binary);
if (!h264File.is_open())
{
std::cout << "Failed to open the H.264 file." << std::endl;
return -1;
}
return 0;
}
int H264Parse::get_startCode_len(const uint8_t *ptr)
{
if (ptr[0] == 0x00 && ptr[1] == 0x00)
{
if (ptr[2] == 0x01)
return 3;
else if (ptr[2] == 0x00 && ptr[3] == 0x01)
return 4;
}
return -1; // 无效的起始码
}
// 读取起始码,并返回其长度
int H264Parse::read_start_code(uint8_t *buf)
{
// 读取前4个字节来判断起始码长度
h264File.read(reinterpret_cast<char *>(buf), 4);
if (h264File.gcount() < 4)
{
return -1;
}
return get_startCode_len(buf);
}
// 寻找NALU的起始码位置
const uint8_t *H264Parse::find_startCode_pos(const uint8_t *buf, uint32_t len)
{
const uint8_t *p = buf;
if (len < 3)
return NULL;
for (uint32_t i = 0; i < len - 3; ++i)
{
if ((p[0] == 0x00 && p[1] == 0x00 && p[2] == 0x01) ||
(p[0] == 0x00 && p[1] == 0x00 && p[2] == 0x00 && p[3] == 0x01))
{
return p;
}
p++;
}
// 检查最后3字节是不是起始码
if (p[0] == 0x00 && p[1] == 0x00 && p[2] == 0x01)
return p;
return NULL;
}
// 调整文件指针位置
int H264Parse::adjust_filePointer_pos(uint32_t totalRead, uint32_t naluLen)
{
int offset = -(totalRead - naluLen);
if (!h264File.eof())
{
h264File.seekg(offset, std::ios::cur);
}
else
{
h264File.clear(); // 达到文件末尾了要先清除 eof 标志
h264File.seekg(offset, std::ios::end);
}
if (h264File.fail())
{
std::cout << "seekg failed!" << std::endl;
return -1;
}
return 0;
}
int H264Parse::read_nalu(uint8_t *buf, uint32_t size, uint32_t &len, uint32_t n)
{
uint32_t totalRead = 0;
int startCodeLength = read_start_code(buf);
if (startCodeLength == -1)
{
printf("read_start_code failed.\n");
return -1;
}
totalRead += 4; // 已经读取了4字节的长度
while (true)
{
if (size < totalRead + n)
{
std::cout << "Buffer size is too small: size=" << size
<< ", needed=" << totalRead + n << std::endl;
return -1;
}
h264File.read(reinterpret_cast<char *>(buf + totalRead), n);
std::streamsize bytesRead = h264File.gcount();
if (bytesRead <= 0)
{
std::cout << "Failed to read from file!" << std::endl;
return -1;
}
uint32_t searchStart = (totalRead > 4) ? totalRead - 3 : startCodeLength;
const uint8_t *naluEnd = find_startCode_pos(buf + searchStart,
bytesRead + (totalRead > 4 ? 3 : 0));
totalRead += bytesRead;
if (naluEnd != nullptr)
{
len = naluEnd - buf;
if (adjust_filePointer_pos(totalRead, len) < 0)
return -1;
break;
}
// 是否读取到文件末尾
if (h264File.peek() == std::char_traits<char>::eof())
{
len = totalRead;
return 0; // NALU完整读取
}
}
memset(buf + len, 0, size - len); // 清空剩余部分
return 1; // 成功读取
}
void H264Parse::close_file()
{
h264File.close();
}
int H264Parse::nalu_tok(const uint8_t *stream, uint32_t streamLen, const uint8_t **nalu,
uint32_t &naluLen, const uint8_t **record)
{
const uint8_t *current = (record && *record) ? *record : stream;
uint32_t offset = static_cast<uint32_t>(current - stream);
if (offset >= streamLen)
{
return -1; // 当前记录位置超出缓冲区
}
int scLen = get_startCode_len(current);
if (scLen == -1 || (current + scLen) > (stream + streamLen))
{
return -1; // 无效的起始码或起始码长度超出缓冲区
}
// 查找下一个起始码的位置
const uint8_t *next_start = find_startCode_pos(current + scLen, streamLen - offset - scLen);
if (next_start)
{
*nalu = current;
naluLen = static_cast<uint32_t>(next_start - current);
*record = next_start;
return 1; // 成功获取到一个 NALU
}
else
{
// 最后一个 NALU
*nalu = current;
naluLen = streamLen - offset;
*record = NULL; // 重置记录指针
return 0; // 分割完毕
}
}测试:
#include <iostream>
#include <vector>
#include "h264Parse.h"
void test1()
{
int ret;
int number = 0;
H264Parse h264;
uint8_t buf[1024 * 1024];
uint32_t len = 0;
h264.open_file("/home/tl/work/app/res/output.h264");
while ((ret = h264.read_nalu(buf, sizeof(buf), len, 1024 * 2)) != -1)
{
printf("number: %d nalu len: %u\n", number, len - h264.get_startCode_len(buf));
number++;
if (ret == 0)
break;
}
if (ret == -1)
{
std::cout << "read_nalu failed." << std::endl;
}
h264.close_file();
}
// 辅助函数:打印 NALU 信息
void print_nalu(const uint8_t *nalu, uint32_t len, int index)
{
std::cout << "NALU " << index << ": Length = " << len << " bytes, Data = ";
for (uint32_t i = 0; i < len; ++i)
{
printf("%02X ", nalu[i]);
}
std::cout << std::endl;
}
void test2()
{
// 构造一个模拟的 H.264 码流缓冲区,包含多个 NALU
// 起始码格式:0x000001 (3 字节) 和 0x00000001 (4 字节)
// NALU 内容:随机填充的字节数据
std::vector<uint8_t> buffer;
// NALU 1: 3 字节起始码 + 5 字节数据
std::vector<uint8_t> nalu1 = {0x00, 0x00, 0x01, 0x65, 0x88, 0x84, 0x21, 0xA0};
buffer.insert(buffer.end(), nalu1.begin(), nalu1.end());
// NALU 2: 4 字节起始码 + 6 字节数据
std::vector<uint8_t> nalu2 = {0x00, 0x00, 0x00, 0x01, 0x41, 0x9A, 0x5C, 0xD4, 0x00, 0x11};
buffer.insert(buffer.end(), nalu2.begin(), nalu2.end());
// NALU 3: 3 字节起始码 + 4 字节数据
std::vector<uint8_t> nalu3 = {0x00, 0x00, 0x01, 0x06, 0x05, 0xFF, 0xEE};
buffer.insert(buffer.end(), nalu3.begin(), nalu3.end());
// NALU 4: 3 字节起始码 + 3 字节数据 (测试末尾)
std::vector<uint8_t> nalu4 = {0x00, 0x00, 0x01, 0x07, 0xAD, 0xBE};
buffer.insert(buffer.end(), nalu4.begin(), nalu4.end());
// 输出构建的缓冲区(可选)
std::cout << "Constructed H.264 Buffer: ";
for (size_t i = 0; i < buffer.size(); ++i)
{
printf("%02X ", buffer[i]);
}
std::cout << "\n\n";
const uint8_t *pnalu = nullptr;
uint32_t nale_len = 0;
const uint8_t *pRecord = NULL; // 初始时为 NULL
int ret;
int nalu_index = 1;
// 循环分割并打印每个 NALU
while ((ret = H264Parse::nalu_tok(buffer.data(), buffer.size(), &pnalu, nale_len, &pRecord)) != -1)
{
print_nalu(pnalu, nale_len, nalu_index);
nalu_index++;
if (ret == 0)
break;
}
if (ret == -1)
{
std::cout << "Error occurred during NALU tokenization." << std::endl;
}
}
// 主函数
int main()
{
test1();
// test2();
return 0;
}以上就是C/C++实现H264文件解析的详细内容,更多关于C++ H264文件解析的资料请关注脚本之家其它相关文章!
