C#给多线程传参的几种方式小结
作者:安替-AnTi
本文详细探讨了如何在C#中进行线程传参,包括启动线程时如何将参数传递给线程函数,以及在多线程环境下正确使用参数的方法,对于理解和实践C#线程编程具有重要意义,需要的朋友可以参考下
前言
线程 被定义为程序的执行路径,每个线程执行特定的工作。当C#程序开始时,主线程自动创建。
线程生命周期
- 未启动状态
- 就绪状态
- 不可运行状态
- 死亡状态
创建无参Thread
void acceptThread(){ //TODO } Thread threadAccept = new Thread(new ThreadStart(acceptThread)); threadAccept.start();
创建有参Thread
给线程传递参数有两种方式,一种方式是使用带ParameterizedThreadStart
委托参数的Thread构造函数,另一种方式是创建一个自定义类
,把线程的方法定义为实例的方法,这样就可以初始化实例的数据,之后启动线程。
方式一:使用ParameterizedThreadStart委托
如果使用了ParameterizedThreadStart
委托,线程的入口必须有一个object类型的参数,且返回类型为void。且看下面的例子:
using System; using System.Threading; namespace ThreadWithParameters { class Program { static void Main(string[] args) { string hello = "hello world"; //这里也可简写成Thread thread = new Thread(ThreadMainWithParameters); //但是为了让大家知道这里用的是ParameterizedThreadStart委托,就没有简写了 Thread thread = new Thread(new ParameterizedThreadStart(ThreadMainWithParameters)); thread.Start(hello); Console.Read(); } static void ThreadMainWithParameters(object obj) { string str = obj as string; if(!string.IsNullOrEmpty(str)) Console.WriteLine("Running in a thread,received: {0}", str); } } }
这里稍微有点麻烦的就是ThreadMainWithParameters方法里的参数必须是object类型的,我们需要进行类型转换。为什么参数必须是object类型呢,各位看看ParameterizedThreadStart委托的声明就知道了。
public delegate void ParameterizedThreadStart(object obj); //ParameterizedThreadStart委托的声明
方式二:创建自定义类
定义一个类,在其中定义需要的字段,将线程的主方法定义为类的一个实例方法。
using System; using System.Threading; namespace ThreadWithParameters { public class MyThread { private string data; public MyThread(string data) { this.data = data; } public void ThreadMain() { Console.WriteLine("Running in a thread,data: {0}", data); } } class Program { static void Main(string[] args) { MyThread myThread = new MyThread("hello world"); Thread thread = new Thread(myThread.ThreadMain); thread.Start(); Console.Read(); } } }
这种方法的缺点在于遇到一个耗时的方法,就新建一个类。
那有什么更好办法既不用强制类型转换,也不用新建一个类呢?
使用匿名方法
方式三:使用匿名方法
using System; using System.Threading; namespace ThreadWithParameters { class Program { static void Main(string[] args) { string hello = "hello world"; //如果写成Thread thread = new Thread(ThreadMainWithParameters(hello));这种形式,编译时就会报错 Thread thread = new Thread(() => ThreadMainWithParameters(hello)); thread.Start(); Console.Read(); } static void ThreadMainWithParameters(string str) { Console.WriteLine("Running in a thread,received: {0}", str); } } }
这样既不用类型强制转换也不用新建类就运行成功了。
但是为什么这种方式能行呢,用ildasm反编译后发现,上述说列出来的第三种方式其实和第二种方式是一样的,只不过自定义类编译器帮我们做了。
下面的是第三种方式main方法反编译的IL代码:
.method private hidebysig static void Main(string[] args) cil managed { .entrypoint // 代码大小 51 (0x33) .maxstack 3 .locals init ([0] class [mscorlib]System.Threading.Thread thread, [1] class ThreadWithParameters.Program/'<>c__DisplayClass1' 'CS$<>8__locals2') IL_0000: newobj instance void ThreadWithParameters.Program/'<>c__DisplayClass1'::.ctor() IL_0005: stloc.1 IL_0006: nop IL_0007: ldloc.1 IL_0008: ldstr "hello world" IL_000d: stfld string ThreadWithParameters.Program/'<>c__DisplayClass1'::hello IL_0012: ldloc.1 IL_0013: ldftn instance void ThreadWithParameters.Program/'<>c__DisplayClass1'::'<Main>b__0'() IL_0019: newobj instance void [mscorlib]System.Threading.ThreadStart::.ctor(object, native int) IL_001e: newobj instance void [mscorlib]System.Threading.Thread::.ctor(class [mscorlib]System.Threading.ThreadStart) IL_0023: stloc.0 IL_0024: ldloc.0 IL_0025: callvirt instance void [mscorlib]System.Threading.Thread::Start() IL_002a: nop IL_002b: call int32 [mscorlib]System.Console::Read() IL_0030: pop IL_0031: nop IL_0032: ret } // end of method Program::Main
在看看第二种方式的IL代码:
.method private hidebysig static void Main(string[] args) cil managed { .entrypoint // 代码大小 44 (0x2c) .maxstack 3 .locals init ([0] class ThreadWithParameters.MyThread myThread, [1] class [mscorlib]System.Threading.Thread thread) IL_0000: nop IL_0001: ldstr "hello world" IL_0006: newobj instance void ThreadWithParameters.MyThread::.ctor(string) IL_000b: stloc.0 IL_000c: ldloc.0 IL_000d: ldftn instance void ThreadWithParameters.MyThread::ThreadMain() IL_0013: newobj instance void [mscorlib]System.Threading.ThreadStart::.ctor(object, native int) IL_0018: newobj instance void [mscorlib]System.Threading.Thread::.ctor(class [mscorlib]System.Threading.ThreadStart) IL_001d: stloc.1 IL_001e: ldloc.1 IL_001f: callvirt instance void [mscorlib]System.Threading.Thread::Start() IL_0024: nop IL_0025: call int32 [mscorlib]System.Console::Read() IL_002a: pop IL_002b: ret } // end of method Program::Main
比较两端代码,可以发现两者都有一个newobj,这句的作用是初始化一个类的实例,第三种方式由编译器生成了一个类:c__DisplayClass1
IL_0000: newobj instance void ThreadWithParameters.Program/'<>c__DisplayClass1'::.ctor() IL_0006: newobj instance void ThreadWithParameters.MyThread::.ctor(string)
以上就是C#给多线程传参的几种方式小结的详细内容,更多关于C#多线程传参方式的资料请关注脚本之家其它相关文章!