java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > SpringBoot集成Kafka低版本和高版本

SpringBoot如何集成Kafka低版本和高版本

作者:谁不想飞舞青春

这篇文章主要介绍了SpringBoot如何集成Kafka低版本和高版本问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教

说明

这里之所以集成低版本和新版本,是因为在企业开发中,有的SpringBoot项目版本很低,像我这个项目版本就很低,是1.4.2.RELEASE版本,而新版本即高版本就是用来自己学习的。

这里主要告诉大家,版本一定要根据自己的项目版本选择对应的kafka版本。

地址

官网地址:https://spring.io/projects/spring-kafka#overview

maven仓库spring-kafka地址:https://mvnrepository.com/artifact/org.springframework.kafka/spring-kafka

官网对应版本图:

低版本SpringBoot集成Kafka代码

linux本地服务器zookeeper和kafka使用版本:

springboot版本和使用的spring版本:

使用的spring-kafka版本:

这里我SpringBoot版本是1.4.2.RELEASE版本,版本很低,官网显示的SpringBoot版本最低是1.5.x,可以使用1.3.x的版本,很明显我的这个不在官网给的范围内,然后我的spring版本是4.3.9.RELEASE,这里我在上面这个maven仓库spring-kafka地址里面看了一个1.3.0版本,如下:

直到我往下继续找,终于发现1.2.2.RELEASE这个版本是与我项目对应的。

刚好这个版本对应的spring版本是4.3.9.RELEASE与我项目的spring版本一致,于是我就使用了这个spring-kafka版本。

好了,这里怎么选择版本就说到这里,下面是代码。

代码

这里之所以是在Java类里面写生产者和消费者配置,是因为springboot和kafka集成版本太低,不支持直接在application.yml里面配置,好像springboot高版本至少2.几的版本可以直接在application.yml里面配置,至于2.几的版本才支持我给忘记了,有知道的小伙伴麻烦告诉下我,谢谢了。

kafka生产者配置

这里是带用户名密码协议配置,最下面三个就是,协议类型为:SASL/SCRAM-SHA-256,如果你们那里的kafka配置没有设置这个,可以不需要配置最下面三个。

企业开发一般需要进行认证才能发送消息。

package com.gmcc.project.controllers.kafka;

import lombok.Data;
import org.springframework.context.annotation.Configuration;

//kafka生产者参数配置
@Data
@Configuration
public class KafkaProducerProperties {
    //指定kafka 代理地址,多个地址用英文逗号隔开
    private String bootstrapServers="192.168.11.111:9092,192.168.11.112:9093";//本地测试kafka使用
    //消息重发次数,如果配置了事务,则不能为0,改为1
    private int retries=0;
    //每次批量发送消息的数量
    private String batchSize="16384";
    //默认值为0,意思就是说消息必须立即被发送,但这样会影响性能
    //一般设置10毫秒左右,这个消息发送完后会进入本地的一个batch,如果10毫秒内这个batch满了16kb就会随batch一起发送出去
    private String lingerMs="10";
    //生产者最大可发送的消息大小,内有多个batch,一旦满了,只有发送到kafka后才能空出位置,否则阻塞接收新消息
    private String bufferMemory="33554432";
    //指定消息key和消息体的编解码方式
    private String keySerializer="org.apache.kafka.common.serialization.StringSerializer";
    private String valueSerializer="org.apache.kafka.common.serialization.StringSerializer";
    //确认等级ack,kafka生产端最重要的选项,如果配置了事务,那必须是-1或者all
    //acks=0,生产者在成功写入消息之前不会等待任何来自服务器的响应
    //acks=1,只要集群的首领节点收到消息,生产者就会收到一个来自服务器成功响应
    //acks=-1,表示分区leader必须等待消息被成功写入到所有的ISR副本(同步副本)中才认为product请求成功。这种方案提供最高的消息持久性保证,但是理论上吞吐率也是最差的
    private String acks="1";
    //协议类型,为SASL类型
    private String securityProtocol="SASL_PLAINTEXT";
    //协议
    private String saslMechanism="SCRAM-SHA-256";
    //用户名密码配置
    private String saslJaas="org.apache.kafka.common.security.scram.ScramLoginModule required username=root password=123456;";
}

然后再创建一个config使kafka生产者配置生效。

如果kafka配置文件没有设置用户名密码协议,注释掉最下面三个即可。

package com.gmcc.project.controllers.config;

import com.gmcc.project.controllers.kafka.KafkaProducerProperties;
import org.apache.kafka.clients.CommonClientConfigs;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.config.SaslConfigs;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;

import java.util.HashMap;
import java.util.Map;

@Configuration
@EnableKafka
public class KafkaProductConfig {
    @Autowired
    private KafkaProducerProperties producerProperties;

    @Bean
    public ProducerFactory<String, String> producerFactory() {
        return new DefaultKafkaProducerFactory<>(producerConfigs());
    }

    @Bean
    public Map<String, Object> producerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, producerProperties.getBootstrapServers());
        props.put(ProducerConfig.RETRIES_CONFIG, producerProperties.getRetries());
        props.put(ProducerConfig.BATCH_SIZE_CONFIG, producerProperties.getBatchSize());
        props.put(ProducerConfig.LINGER_MS_CONFIG, producerProperties.getLingerMs());
        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, producerProperties.getBufferMemory());
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, producerProperties.getKeySerializer());
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, producerProperties.getValueSerializer());
        props.put(ProducerConfig.ACKS_CONFIG, producerProperties.getAcks());
        //props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, producerProperties.getSecurityProtocol());
        //props.put(SaslConfigs.SASL_MECHANISM, producerProperties.getSaslMechanism());
        //props.put(SaslConfigs.SASL_JAAS_CONFIG, producerProperties.getSaslJaas());
        return props;
    }

    @Bean
    public KafkaTemplate<String, String> kafkaTemplate() {
        return new KafkaTemplate<>(producerFactory());
    }
}

kafka消费者配置

如果kafka配置文件没有配置用户名密码协议,认证后才能消费消息,可以将最下面的三个注释掉不使用。

package com.gmcc.project.controllers.kafka;

import lombok.Data;
import org.springframework.context.annotation.Configuration;

//kafka消费者配置
@Data
@Configuration
public class KafkaConsumerProperties {
    //指定kafka 代理地址,多个地址用英文逗号隔开
    private String bootstrapServers="192.168.11.111:9092,192.168.11.112:9093";//本地测试kafka使用
    //指定默认消费者group id,消费者监听到的也是这个
    private String groupId="test-consumer-group";//本地测试使用
    //消费者在读取一个没有offset的分区或者offset无效时的策略,默认earliest是从头读,latest不是从头读
    private String autoOffsetReset="earliest";
    //是否自动提交偏移量offset,默认为true,一般是false,如果为false,则auto-commit-interval属性就会无效
    private boolean  enableAutoCommit=true;
    //自动提交间隔时间,接收到消息后多久会提交offset,前提需要开启自动提交,也就是enable-auto-commit设置为true,默认单位是毫秒(ms),如果写10s,最后加载的显示值为10000ms,需要符合特定时间格式:1000ms,1S,1M,1H,1D(毫秒,秒,分,小时,天)
    private String autoCommitInterval="1000";
    //指定消息key和消息体的编解码方式
    private String keyDeserializerClass="org.apache.kafka.common.serialization.StringDeserializer";
    private String valueDeserializerClass ="org.apache.kafka.common.serialization.StringDeserializer";
    //批量消费每次最多消费多少条信息
    private String maxPollRecords="50";
    //协议类型,为SASL类型
    private String securityProtocol="SASL_PLAINTEXT";
    //协议
    private String saslMechanism="SCRAM-SHA-256";
    //用户名密码配置
    private String saslJaas="org.apache.kafka.common.security.scram.ScramLoginModule required username=root password=123456;";
}

然后再创建一个config使kafka消费者配置生效。如果kafka没有设置用户名密码协议,注释掉最下面三个即可。

package com.gmcc.project.controllers.config;

import com.gmcc.project.controllers.kafka.KafkaConsumerProperties;
import org.apache.kafka.clients.CommonClientConfigs;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.config.SaslConfigs;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;

import java.util.HashMap;
import java.util.Map;

@Configuration
@EnableKafka
public class KafkaConsumerConfig {
    @Autowired
    private KafkaConsumerProperties consumerProperties;

    @Bean
    ConcurrentKafkaListenerContainerFactory<String, String>
    kafkaListenerContainerFactory() {
        ConcurrentKafkaListenerContainerFactory<String, String> factory =
                new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());
        //设置为批量消费,每个批次数量在Kafka配置参数中设置ConsumerConfig.MAX_POLL_RECORDS_CONFIG
        factory.setBatchListener(false);//这里为true的时候,KafkaConsumer那里需要使用批量消费方法,不然报错
        return factory;
    }

    @Bean
    public ConsumerFactory<String, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }

    @Bean
    public Map<String, Object> consumerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, consumerProperties.getBootstrapServers());
        props.put(ConsumerConfig.GROUP_ID_CONFIG, consumerProperties.getGroupId());
        props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, consumerProperties.getAutoOffsetReset());
        props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, consumerProperties.isEnableAutoCommit());
        props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, consumerProperties.getAutoCommitInterval());
        props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, consumerProperties.getKeyDeserializerClass());
        props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, consumerProperties.getValueDeserializerClass());
        props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, consumerProperties.getMaxPollRecords());
        //props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, consumerProperties.getSecurityProtocol());
        //props.put(SaslConfigs.SASL_MECHANISM, consumerProperties.getSaslMechanism());
        //props.put(SaslConfigs.SASL_JAAS_CONFIG, consumerProperties.getSaslJaas());
        return props;
    }
}

发送消息给kafka的Controller代码

这里使用addCallback这个方法,是可以在生产者发送消息给kafka时,如果生产者配置有问题或者服务有问题,我可以直接看到接口返回结果,所以没有直接这样kafkaTemplate.send(“first”,data);写。

package com.gmcc.project.controllers.kafka;

import com.gmcc.project.core.utils.StringUtils;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

import javax.annotation.Resource;
import java.util.HashMap;
import java.util.Map;

//kafka生产者
@RestController
@RequestMapping("kafkaProducer")
public class KafkaProducerController {

    @Resource
    private KafkaTemplate<String,String> kafkaTemplate;

    //向kafka发送消息
    @RequestMapping(value = "/sendFileMd5", method = RequestMethod.POST)
    public Map<String, Object> sendFileMd5(@RequestParam(value = "fileMd5", required = false) String fileMd5,
                                           @RequestParam(value = "uuid", required = false) String uuid){
        Map<String, Object> returnMap = new HashMap<>();
        //写在success里面只会返回一次,第二次就给你返回一个空map对象
        returnMap.put("message", "发送消息成功!");
        returnMap.put("result", null);
        returnMap.put("status", "200");
        //非空判断
        if(StringUtils.isBlank(fileMd5)) {
            returnMap.put("message", "fileMd5不能为空!");
            returnMap.put("result", "");
            returnMap.put("status", "999");
            return returnMap;
        }
        if(StringUtils.isBlank(uuid)) {
            returnMap.put("message", "uuid不能为空!");
            returnMap.put("result", "");
            returnMap.put("status", "999");
            return returnMap;
        }
        try{
            //需要发送的消息
            String data="{\"file_md5\":\""+fileMd5+"\",\"uuid\":\""+uuid+"\",\"vendor\":\"etone\",\"model\":\"5g信令回放\"}";
            //pro环境使用topic为test_sample_get
            //本地测试使用,向topic为first发送消息
            kafkaTemplate.send("first",data).addCallback(success -> {
                // 消息发送到的topic
                String topic = success.getRecordMetadata().topic();
                // 消息发送到的分区
                int partition = success.getRecordMetadata().partition();
                // 消息在分区内的offset
                long offset = success.getRecordMetadata().offset();
                System.out.println("发送消息成功:"+data+",主题:"+topic+",分区:"+partition+",偏移量:"+offset);
            }, failure -> {
                returnMap.put("message", "发送消息失败:" + failure.getMessage());
                returnMap.put("result", null);
                returnMap.put("status", "500");
            });
        }catch (Exception e){
            returnMap.put("message", e.getMessage());
            returnMap.put("result", null);
            returnMap.put("status", "500");
        }
        return returnMap;
    }
}

消费者消费代码

package com.gmcc.project.controllers.kafka;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;

@Component
public class KafkaConsumer {

    //逐条消费
    @KafkaListener(topics = "first")
    //@KafkaListener(topics = "test_sample_return")
    public void onMessage(ConsumerRecord<?,?> record){

        try{
            //消费的哪个topic、partition的消息,打印出消息内容
            System.out.println("消费:"+record.topic()+"-"+record.partition()+"-"+record.value());
        }catch (Exception e){
            e.printStackTrace();
        }
    }

    //批量消费方法
    /*@KafkaListener(topics = "first")
    public void onMessage(List<ConsumerRecord<?,?>> records){
        System.out.println("消费数量="+records.size());
        for(ConsumerRecord<?,?> record:records){
            //消费的哪个topic、partition的消息,打印出消息内容
            System.out.println("消费:"+record.topic()+"-"+record.partition()+"-"+record.value());
        }
    }*/
}

消费到的消息:

这里面的uuid是集成了websocket需要用到,这里怎么集成websocket将消费到的消息返回给客户端等以后有时间了在另写一个博客说明。

高版本SpringBoot集成Kafka代码

这里高版本可以供自己学习。高版本集成很简单,没有低版本那么麻烦。

代码结构:

pom.xml文件

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.6.2</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.hjl</groupId>
    <artifactId>kafka-demo</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>kafka-demo</name>
    <description>Demo project for Spring Boot</description>
    <properties>
        <java.version>1.8</java.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <version>2.6.2</version>
            </plugin>
        </plugins>
    </build>

</project>

这里我的SpringBoot版本是2.6.2版本,spring-kafka版本是2.8.1版本。符合官网给的版本推荐。

如下:

application.yml文件

这里之所以可以在application.yml直接配置kafka,是因为springboot和spring-kafka版本很高。

这里生产者配置和消费者配置都在里面。

server:
  port: 8080

spring:
  kafka:
    # 指定kafka 代理地址,多个地址用英文逗号隔开
    bootstrap-servers: 192.168.11.111:9092
    #初始化生产者配置
    producer:
      #消息重发次数,如果配置了事务,则不能为0,改为1
      retries: 0
      # 每次批量发送消息的数量
      batch-size: 16384
      #生产者最大可发送的消息大小,内有多个batch,一旦满了,只有发送到kafka后才能空出位置,否则阻塞接收新消息
      buffer-memory: 33554432
      # 指定消息key和消息体的编解码方式
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
      #确认等级ack,kafka生产端最重要的选项,如果配置了事务,那必须是-1或者all
      #acks=0,生产者在成功写入消息之前不会等待任何来自服务器的响应
      #acks=1,只要集群的首领节点收到消息,生产者就会收到一个来自服务器成功响应
      #acks=-1,表示分区leader必须等待消息被成功写入到所有的ISR副本(同步副本)中才认为product请求成功。这种方案提供最高的消息持久性保证,但是理论上吞吐率也是最差的
      acks: all
      #配置事务,名字随便起
      #transaction-id-prefix: hbz-transaction-

    #初始化消费者配置
    consumer:
      # 指定默认消费者group id,消费者监听到的也是这个
      group-id: test-consumer-group
      #消费者在读取一个没有offset的分区或者offset无效时的策略,默认earliest是从头读,latest不是从头读
      auto-offset-reset: earliest
      #是否自动提交偏移量offset,默认为true,一般是false,如果为false,则auto-commit-interval属性就会无效
      enable-auto-commit: true
      #自动提交间隔时间,接收到消息后多久会提交offset,前提需要开启自动提交,也就是enable-auto-commit设置为true,默认单位是毫秒(ms),如果写10s,最后加载的显示值为10000ms,需要符合特定时间格式:1000ms,1S,1M,1H,1D(毫秒,秒,分,小时,天)
      auto-commit-interval: 1000
      # 指定消息key和消息体的编解码方式
      key-serializer: org.apache.kafka.common.serialization.StringDeserializer
      value-serializer: org.apache.kafka.common.serialization.StringDeserializer
      #批量消费每次最多消费多少条信息
      max-poll-records: 50

    #监听器设置
    listener:
      #消费端监听的topic不存在时,项目启动会报错(关掉)
      missing-topics-fatal: false
      #设置消费类型 批量消费batch,单条消费single
      type: batch
      #指定容器的线程数,提高并发量,默认为1
      #concurrency: 3
      #手动提交偏移量,当enable-auto-commit为true自动提交时,不需要设置改属性
      #ack-mode: manual

生产者发送消息代码

package com.project.kafkademo.kafkaproduct;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

//kafka生产者
@RestController
@RequestMapping("kafka")
public class KafkaProducer {

    @Autowired
    private KafkaTemplate<String,String> kafkaTemplate;

    @RequestMapping(value = "/send", method = RequestMethod.GET)
    public String send(@RequestParam(value = "message", required = false) String message){
        kafkaTemplate.send("first",message);
        return "success";
    }
}

消费者消费消息代码

package com.project.kafkademo.kafkaconsumer;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
public class KafkaConsumer {

    //消费监听,topics=监听的主题名,groupId=分组,consumer.properties里面的group.id配置
    //如果在这里直接写groupId="test-consumer-group"会导致application.yml里面设置的group-id不起效
    //最终会被这里的设置直接覆盖掉,所以这里不应该加groupId="test-consumer-group"这个属性
    //@KafkaListener(topics = "first",groupId="test-consumer-group")
    //这样写的话,application.yml里面设置的group-id就会生效,监控的就是application.yml里面的了
    //逐条消费
    /*@KafkaListener(topics = "first")
    public void onMessage(ConsumerRecord<?,?> record){
        //消费的哪个topic、partition的消息,打印出消息内容
        System.out.println("消费:"+record.topic()+"-"+record.partition()+"-"+record.value());
    }*/

    //批量消费,用List批量接收消息,ConsumerRecord<?,?>只能单条消费消息
    /*@KafkaListener(topics = "first")
    public void onMessage(List<ConsumerRecord<?,?>> records){
        System.out.println("消费数量="+records.size());
        for(ConsumerRecord<?,?> record:records){
            //消费的哪个topic、partition的消息,打印出消息内容
            System.out.println("消费:"+record.topic()+"-"+record.partition()+"-"+record.value());
        }
    }*/

    //批量消费,ConsumerRecords<?,?>用于批量消费消息
    @KafkaListener(topics = "first")
    public void onMessage(ConsumerRecords<?,?> records){
        System.out.println("消费数量="+records.count());
        for(ConsumerRecord<?,?> record:records){
            //消费的哪个topic、partition(哪个分区)的消息,打印出消息内容
            System.out.println("消费:"+record.topic()+"-"+record.partition()+"-"+record.key()+"-"+record.value());
        }
    }
}

效果

项目启动后,会打印出你配置的参数以及默认配置的参数

postman接口测试:

后台结果打印:

总结

好了,我的记录就先到这里。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文