使用Spark SQL实现读取不带表头的txt文件
作者:saberbin
这篇文章主要为大家详细介绍了如何使用Spark SQL实现读取不带表头的txt文件,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
spark SQL读取不带表头的txt文件时,如果不传入schema信息,则会自动给列命名_c0
、_c1
等。而且也无法通过调用df.as()
方法转换成dataset对象(甚至因为样例类的属性名称与df的列名不一致而抛出异常)。
这时候可以通过下面的方式添加schema
// 定义schema List<StructField> fields = new ArrayList<>(); fields.add(DataTypes.createStructField("word", DataTypes.StringType, true)); StructType schema = DataTypes.createStructType(fields); Dataset<Row> dataFrame = sparkSession.createDataFrame(RowRDD, schema);// rdd -> dataframe
但是如果已经是dataframe对象则无法更新schema。 所以我们需要在加载文件的时候通过调用schema()
方法传入构造好的StructType
对象以创建dataframe。 例如:
// 定义schema List<StructField> fields = new ArrayList<>(); fields.add(DataTypes.createStructField("word", DataTypes.StringType, true)); fields.add(DataTypes.createStructField("cnt", DataTypes.StringType, true)); StructType schema = DataTypes.createStructType(fields); Dataset<Row> citydf = reader.format("text") .option("delimiter", "\t") .option("header", true) .schema(schema) .csv("D:\project\sparkDemo\inputs\city_info.txt");
那么这时候就有问题了,如果需要加载的文件很多,全都要手动创建列表逐个添加字段会非常麻烦。
那么可以封装StructType
对象的实例化方法,传入目标字段名称以及数据类型。 字段名称以及数据类型可以通过样例类获取。
StructType对象的实例化方法
package src.main.utils; import java.util.*; import java.util.stream.Collectors; import java.util.stream.Stream; import org.apache.spark.sql.types.DataType; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; import javax.activation.UnsupportedDataTypeException; public class SchemaMaker { private LinkedHashMap<String, String> schemaMap = new LinkedHashMap<>(); final private List<String> valueTypes = Stream.of("string", "integer", "double", "long").collect(Collectors.toList()); List<StructField> fields = new ArrayList<>(); public SchemaMaker(){ this.fields.clear(); } public SchemaMaker(ArrayList<ArrayList<String>> dataList){ this.fields.clear(); for (ArrayList<String> data : dataList) { int size = data.size(); if (size != 2){ throw new RuntimeException("每个数据必须为2个参数,第一个为字段名,第二个为字段类型"); } String fieldName = data.get(0); String fieldType = getLowCase(data.get(1)); if (checkType(fieldType)){ this.schemaMap.put(fieldName, fieldType); }else { throw new RuntimeException("数据类型不符合预期" + this.valueTypes.toString()); } } } public void add(String fieldName, String fieldType){ String fieldtype = getLowCase(fieldType); if (checkType(fieldtype)){ this.schemaMap.put(fieldName, fieldtype); }else { throw new RuntimeException("数据类型不符合预期" + this.valueTypes.toString()); } } private String getLowCase(String s){ return s.toLowerCase(); } private boolean checkType(String typeValue){ return this.valueTypes.contains(typeValue); } private DataType getDataType (String typeValue) throws UnsupportedDataTypeException { if (typeValue.equals("string")){ return DataTypes.StringType; } else if (typeValue.equals("integer")) { return DataTypes.IntegerType; } else if (typeValue.equals("long")) { return DataTypes.LongType; } else if (typeValue.equals("double")) { return DataTypes.DoubleType; }else { throw new UnsupportedDataTypeException(typeValue); } } public StructType getStructType() throws UnsupportedDataTypeException { for (Map.Entry<String, String> schemaValue : schemaMap.entrySet()) { String fieldName = schemaValue.getKey(); String fieldType = schemaValue.getValue(); DataType fieldDataType = getDataType(fieldType); this.fields.add(DataTypes.createStructField(fieldName, fieldDataType, true)); } return DataTypes.createStructType(this.fields); } }
封装一层,通过传入的Object.class().getDeclaredFields()
方法获取的字段信息构造StructType
public static StructType getStructType(Field[] fields) throws UnsupportedDataTypeException { ArrayList<ArrayList<String>> lists = new ArrayList<>(); for (Field field : fields) { String name = field.getName(); AnnotatedType annotatedType = field.getAnnotatedType(); String[] typeSplit = annotatedType.getType().getTypeName().split("\."); String type = typeSplit[typeSplit.length - 1]; ArrayList<String> tmpList = new ArrayList<String>(); tmpList.add(name); tmpList.add(type); lists.add(tmpList); } SchemaMaker schemaMaker = new SchemaMaker(lists); return schemaMaker.getStructType(); }
样例类的定义
public static class City implements Serializable{ private Long cityid; private String cityname; private String area; public City(Long cityid, String cityname, String area) { this.cityid = cityid; this.cityname = cityname; this.area = area; } public Long getCityid() { return cityid; } public void setCityid(Long cityid) { this.cityid = cityid; } public String getCityname() { return cityname; } public void setCityname(String cityname) { this.cityname = cityname; } public String getArea() { return area; } public void setArea(String area) { this.area = area; } } public static class Product implements Serializable{ private Long productid; private String product; private String product_from; public Long getProductid() { return productid; } public void setProductid(Long productid) { this.productid = productid; } public String getProduct() { return product; } public void setProduct(String product) { this.product = product; } public String getProduct_from() { return product_from; } public void setProduct_from(String product_from) { this.product_from = product_from; } public Product(Long productid, String product, String product_from) { this.productid = productid; this.product = product; this.product_from = product_from; } } public static class UserVisitAction implements Serializable{ private String date; private Long user_id; private String session_id; private Long page_id; private String action_time; private String search_keyword; private Long click_category_id; private Long click_product_id; private String order_category_ids; private String order_product_ids; private String pay_category_ids; private String pay_product_ids; private Long city_id; public String getDate() { return date; } public void setDate(String date) { this.date = date; } public Long getUser_id() { return user_id; } public void setUser_id(Long user_id) { this.user_id = user_id; } public String getSession_id() { return session_id; } public void setSession_id(String session_id) { this.session_id = session_id; } public Long getPage_id() { return page_id; } public void setPage_id(Long page_id) { this.page_id = page_id; } public String getAction_time() { return action_time; } public void setAction_time(String action_time) { this.action_time = action_time; } public String getSearch_keyword() { return search_keyword; } public void setSearch_keyword(String search_keyword) { this.search_keyword = search_keyword; } public Long getClick_category_id() { return click_category_id; } public void setClick_category_id(Long click_category_id) { this.click_category_id = click_category_id; } public Long getClick_product_id() { return click_product_id; } public void setClick_product_id(Long click_product_id) { this.click_product_id = click_product_id; } public String getOrder_category_ids() { return order_category_ids; } public void setOrder_category_ids(String order_category_ids) { this.order_category_ids = order_category_ids; } public String getOrder_product_ids() { return order_product_ids; } public void setOrder_product_ids(String order_product_ids) { this.order_product_ids = order_product_ids; } public String getPay_category_ids() { return pay_category_ids; } public void setPay_category_ids(String pay_category_ids) { this.pay_category_ids = pay_category_ids; } public String getPay_product_ids() { return pay_product_ids; } public void setPay_product_ids(String pay_product_ids) { this.pay_product_ids = pay_product_ids; } public Long getCity_id() { return city_id; } public void setCity_id(Long city_id) { this.city_id = city_id; } public UserVisitAction(String date, Long user_id, String session_id, Long page_id, String action_time, String search_keyword, Long click_category_id, Long click_product_id, String order_category_ids, String order_product_ids, String pay_category_ids, String pay_product_ids, Long city_id) { this.date = date; this.user_id = user_id; this.session_id = session_id; this.page_id = page_id; this.action_time = action_time; this.search_keyword = search_keyword; this.click_category_id = click_category_id; this.click_product_id = click_product_id; this.order_category_ids = order_category_ids; this.order_product_ids = order_product_ids; this.pay_category_ids = pay_category_ids; this.pay_product_ids = pay_product_ids; this.city_id = city_id; } }
主程序部分
DataFrameReader reader = sparkSession.read(); StructType citySchema = getStructType(City.class.getDeclaredFields()); StructType productSchema = getStructType(Product.class.getDeclaredFields()); StructType actionSchema = getStructType(UserVisitAction.class.getDeclaredFields()); Dataset<Row> citydf = reader.format("text") .option("delimiter", "\t") .option("header", true) .schema(citySchema) .csv("D:\project\sparkDemo\inputs\city_info.txt"); Dataset<Row> productdf = reader.format("text") .option("delimiter", "\t") .option("header", true) .schema(productSchema) .csv("D:\project\sparkDemo\inputs\product_info.txt"); Dataset<Row> actiondf = reader.format("text") .option("delimiter", "\t") .option("header", true) .schema(actionSchema) .csv("D:\project\sparkDemo\inputs\user_visit_action.txt"); Dataset<City> cityDataset = citydf.as(Encoders.bean(City.class)); // 转换为ds对象 // cityDataset.show(); citydf.write().format("jdbc").option("url", "jdbc:mysql://172.20.143.219:3306/test") .option("driver", "com.mysql.cj.jdbc.Driver").option("user", "root") .option("password", "mysql").option("dbtable", "city_info").mode("overwrite").save(); productdf.write().format("jdbc").option("url", "jdbc:mysql://172.20.143.219:3306/test") .option("driver", "com.mysql.cj.jdbc.Driver").option("user", "root") .option("password", "mysql").option("dbtable", "product_info").mode("overwrite").save(); actiondf.write().format("jdbc").option("url", "jdbc:mysql://172.20.143.219:3306/test") .option("driver", "com.mysql.cj.jdbc.Driver").option("user", "root") .option("password", "mysql").option("dbtable", "user_visit_action").mode("overwrite").save();
通过这个方法自定义了样例类之后可以进行批量读取与处理txt文件了。
PS:在缺乏文件信息的时候不要贸然加载文件,否则可能会造成严重的后果。
以上就是使用Spark SQL实现读取不带表头的txt文件的详细内容,更多关于Spark SQL读取txt的资料请关注脚本之家其它相关文章!