C 语言

关注公众号 jb51net

关闭
首页 > 软件编程 > C 语言 > OpenCV图像矫正

深入探讨C++ OpenCV如何实现图像矫正

作者:最难不过二叉树

这篇文章主要为大家详细介绍了C++ OpenCV如何实现简单的图像矫正功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下

刚进入实验室导师就交给我一个任务,就是让我设计算法给图像进行矫正。哎呀,我不太会图像这块啊,不过还是接下来了,硬着头皮开干吧!

那什么是图像的矫正呢?举个例子就好明白了。

我的好朋友小明给我拍了这几张照片,因为他的拍照技术不咋地,照片都拍得歪歪扭扭的,比如下面这些照片:

发票

文本

这些图片让人看得真不舒服!看个图片还要歪脖子看,实在是太烦人了!我叫小明帮我扫描一下一本教科书,小明把每一页书都拍成上面的文本那样了。好气啊那该怎么办呢?一页一页用PS来处理?1000页的矫正啊,当然交给计算机去做!

真的,对于图像矫正的问题,在图像处理领域还真得多,比如人民币的矫正、文本的矫正、车牌的矫正、身份证矫正等等。这些都是因为拍摄者总不可能100%正确地拍摄好图片,这就要求我们通过后期的图像处理技术将图片还原好,才能进一步做后面的处理,比如数字分割啊数字识别啊,不然歪歪扭扭的文字数字,想识别出来估计就很难了。

上面几个图,我们在日常生活中遇到的可不少,因为拍摄时拍的不好,导致拍出来的图片歪歪扭扭的,很不自然,那么我们能不能把这些图片尽可能地矫正过来呢?

OpenCV告诉我们,没问题!工具我给你,算法你自己设计!

比如图一该怎么做?那就涉及到了图像的矫正和感兴趣区域提取两大技术了。

总的来说,要进行进行图像矫正,至少有以下几项知识储备:

下面以发票矫正、文本矫正为例,一步步剖析如何实现图像矫正。

比如我们要矫正这张图片,思路应该是怎么样?

首先分析这张图的特点。

在这张图里,物体有一定的倾斜角度,但是角度不大;背景是黑色的,而且物体边缘应该比较明显。

没错,我们就抓住边缘比较明显来做文章!我们是不是可以先把轮廓找出来(找出来的轮廓当然就是一个大大的矩形),然后用矩形去包围它,得到他的旋转角度,然后根据得到的角度进行旋转,那样不就可以实现矫正了吗!

再详细地总结处理步骤:

我把该矫正算法命名为基于轮廓提取的矫正算法,因为其关键技术就是通过轮廓来获取旋转角度。

#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;

//第一个参数:输入图片名称;第二个参数:输出图片名称
void GetContoursPic(const char* pSrcFileName, const char* pDstFileName)
{
	Mat srcImg = imread(pSrcFileName);
	imshow("原始图", srcImg);
	Mat gray, binImg;
	//灰度化
	cvtColor(srcImg, gray, COLOR_RGB2GRAY);
	imshow("灰度图", gray);
	//二值化
	threshold(gray, binImg, 100, 200, CV_THRESH_BINARY);
	imshow("二值化", binImg);

	vector<vector<Point> > contours;
	vector<Rect> boundRect(contours.size());
	//注意第5个参数为CV_RETR_EXTERNAL,只检索外框  
	findContours(binImg, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE); //找轮廓
	cout << contours.size() << endl;
	for (int i = 0; i < contours.size(); i++)
	{
		//需要获取的坐标  
		CvPoint2D32f rectpoint[4];
		CvBox2D rect =minAreaRect(Mat(contours[i]));

		cvBoxPoints(rect, rectpoint); //获取4个顶点坐标  
		//与水平线的角度  
		float angle = rect.angle;
		cout << angle << endl;

		int line1 = sqrt((rectpoint[1].y - rectpoint[0].y)*(rectpoint[1].y - rectpoint[0].y) + (rectpoint[1].x - rectpoint[0].x)*(rectpoint[1].x - rectpoint[0].x));
		int line2 = sqrt((rectpoint[3].y - rectpoint[0].y)*(rectpoint[3].y - rectpoint[0].y) + (rectpoint[3].x - rectpoint[0].x)*(rectpoint[3].x - rectpoint[0].x));
		//rectangle(binImg, rectpoint[0], rectpoint[3], Scalar(255), 2);
		//面积太小的直接pass
		if (line1 * line2 < 600)
		{
			continue;
		}

		//为了让正方形横着放,所以旋转角度是不一样的。竖放的,给他加90度,翻过来  
		if (line1 > line2) 
		{
			angle = 90 + angle;
		}

		//新建一个感兴趣的区域图,大小跟原图一样大  
		Mat RoiSrcImg(srcImg.rows, srcImg.cols, CV_8UC3); //注意这里必须选CV_8UC3
		RoiSrcImg.setTo(0); //颜色都设置为黑色  
		//imshow("新建的ROI", RoiSrcImg);
		//对得到的轮廓填充一下  
		drawContours(binImg, contours, -1, Scalar(255),CV_FILLED);

		//抠图到RoiSrcImg
		srcImg.copyTo(RoiSrcImg, binImg);


		//再显示一下看看,除了感兴趣的区域,其他部分都是黑色的了  
		namedWindow("RoiSrcImg", 1);
		imshow("RoiSrcImg", RoiSrcImg);

		//创建一个旋转后的图像  
		Mat RatationedImg(RoiSrcImg.rows, RoiSrcImg.cols, CV_8UC1);
		RatationedImg.setTo(0);
		//对RoiSrcImg进行旋转  
		Point2f center = rect.center;  //中心点  
		Mat M2 = getRotationMatrix2D(center, angle, 1);//计算旋转加缩放的变换矩阵 
		warpAffine(RoiSrcImg, RatationedImg, M2, RoiSrcImg.size(),1, 0, Scalar(0));//仿射变换 
		imshow("旋转之后", RatationedImg);
		imwrite("r.jpg", RatationedImg); //将矫正后的图片保存下来
	}

#if 1
	//对ROI区域进行抠图

	//对旋转后的图片进行轮廓提取  
	vector<vector<Point> > contours2;
	Mat raw = imread("r.jpg");
	Mat SecondFindImg;
	//SecondFindImg.setTo(0);
	cvtColor(raw, SecondFindImg, COLOR_BGR2GRAY);  //灰度化  
	threshold(SecondFindImg, SecondFindImg, 80, 200, CV_THRESH_BINARY);
	findContours(SecondFindImg, contours2, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
	//cout << "sec contour:" << contours2.size() << endl;

	for (int j = 0; j < contours2.size(); j++)
	{
		//这时候其实就是一个长方形了,所以获取rect  
		Rect rect = boundingRect(Mat(contours2[j]));
		//面积太小的轮廓直接pass,通过设置过滤面积大小,可以保证只拿到外框
		if (rect.area() < 600)
		{
			continue;
		}
		Mat dstImg = raw(rect);
		imshow("dst", dstImg);
		imwrite(pDstFileName, dstImg);
	}
#endif


}


void main()
{
	GetContoursPic("6.jpg", "FinalImage.jpg");
	waitKey();
}

效果如下:

原始图

倾斜矫正之后

最后把目标区域抠出来,成为单独的照片。

上面的算法可以很好的处理发票的倾斜矫正,那文本矫正可以吗?我赶紧试了一下,结果是失败的。

原图

算法矫正后,还是原样,矫正失败。

认真分析一下,还是很容易看出文本矫正失败的原因的。

原因就在于,发票图像他们有明显的的边界轮廓,而文本图像没有。文本图像的背景是白色的,所以我们没有办法像人民币发票那类有明显边界的矩形物体那样,提取出轮廓并旋转矫正。

经过深入分析可以看出,虽然文本类图像没有明显的边缘轮廓,但是他们有一个很重要的特征,那就是每一行文字都是呈现一条直线形状,而且这些直线都是平行的!

对于这种情况,我想到了另一种方法:基于直线探测的矫正算法

首先介绍一下我的算法思路:

然后给出OpenCV的实现算法:

#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;

#define ERROR 1234

//度数转换
double DegreeTrans(double theta)
{
	double res = theta / CV_PI * 180;
	return res;
}


//逆时针旋转图像degree角度(原尺寸)    
void rotateImage(Mat src, Mat& img_rotate, double degree)
{
	//旋转中心为图像中心    
	Point2f center;
	center.x = float(src.cols / 2.0);
	center.y = float(src.rows / 2.0);
	int length = 0;
	length = sqrt(src.cols*src.cols + src.rows*src.rows);
	//计算二维旋转的仿射变换矩阵  
	Mat M = getRotationMatrix2D(center, degree, 1);
	warpAffine(src, img_rotate, M, Size(length, length), 1, 0, Scalar(255,255,255));//仿射变换,背景色填充为白色  
}

//通过霍夫变换计算角度
double CalcDegree(const Mat &srcImage, Mat &dst)
{
	Mat midImage, dstImage;

	Canny(srcImage, midImage, 50, 200, 3);
	cvtColor(midImage, dstImage, CV_GRAY2BGR);

	//通过霍夫变换检测直线
	vector<Vec2f> lines;
	HoughLines(midImage, lines, 1, CV_PI / 180, 300, 0, 0);//第5个参数就是阈值,阈值越大,检测精度越高
	//cout << lines.size() << endl;

	//由于图像不同,阈值不好设定,因为阈值设定过高导致无法检测直线,阈值过低直线太多,速度很慢
	//所以根据阈值由大到小设置了三个阈值,如果经过大量试验后,可以固定一个适合的阈值。

	if (!lines.size())
	{
		HoughLines(midImage, lines, 1, CV_PI / 180, 200, 0, 0);
	}
	//cout << lines.size() << endl;

	if (!lines.size())
	{
		HoughLines(midImage, lines, 1, CV_PI / 180, 150, 0, 0);
	}
	//cout << lines.size() << endl;
	if (!lines.size())
	{
		cout << "没有检测到直线!" << endl;
		return ERROR;
	}

	float sum = 0;
	//依次画出每条线段
	for (size_t i = 0; i < lines.size(); i++)
	{
		float rho = lines[i][0];
		float theta = lines[i][1];
		Point pt1, pt2;
		//cout << theta << endl;
		double a = cos(theta), b = sin(theta);
		double x0 = a*rho, y0 = b*rho;
		pt1.x = cvRound(x0 + 1000 * (-b));
		pt1.y = cvRound(y0 + 1000 * (a));
		pt2.x = cvRound(x0 - 1000 * (-b));
		pt2.y = cvRound(y0 - 1000 * (a));
		//只选角度最小的作为旋转角度
		sum += theta;

		line(dstImage, pt1, pt2, Scalar(55, 100, 195), 1, LINE_AA); //Scalar函数用于调节线段颜色

		imshow("直线探测效果图", dstImage);
	}
	float average = sum / lines.size(); //对所有角度求平均,这样做旋转效果会更好

	cout << "average theta:" << average << endl;

	double angle = DegreeTrans(average) - 90;

	rotateImage(dstImage, dst, angle);
	//imshow("直线探测效果图2", dstImage);
	return angle;
}


void ImageRecify(const char* pInFileName, const char* pOutFileName)
{
	double degree;
	Mat src = imread(pInFileName);
	imshow("原始图", src);
	Mat dst;
	//倾斜角度矫正
	degree = CalcDegree(src,dst);
	if (degree == ERROR)
	{
		cout << "矫正失败!" << endl;
		return;
	}
	rotateImage(src, dst, degree);
	cout << "angle:" << degree << endl;
	imshow("旋转调整后", dst);

	Mat resulyImage = dst(Rect(0, 0, dst.cols, 500)); //根据先验知识,估计好文本的长宽,再裁剪下来
	imshow("裁剪之后", resulyImage);
	imwrite("recified.jpg", resulyImage); 
}


int main()
{
	ImageRecify("correct2.jpg", "FinalImage.jpg");
	waitKey();
	return 0;
}

看看效果。这是原始图

直线探测的效果。

矫正之后的效果。

我们发现矫正之后的图像有较多留白,影响观看,所以需要进一步裁剪,保留文字区域。

赶紧再试多一张。

原始图

直线探测

矫正效果

进一步裁剪

可以看出,基于直线探测的矫正算法在文本处理上效果真的很不错!

最后总结一下两个算法的应用场景:

以上就是深入探讨C++ OpenCV如何实现图像矫正的详细内容,更多关于OpenCV图像矫正的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文