C++实现旋转扫描仪的示例代码
作者:csdn_aspnet
旋转扫描仪(Rotating Scanner),也称为旋转扫描仪或圆形扫描仪,是一种用于获取图像和文档的设备,下面就跟随小编一起来学习一下如何使用C++实现旋转扫描仪功能吧
旋转扫描仪(Rotating Scanner),也称为旋转扫描仪或圆形扫描仪,是一种用于获取图像和文档的设备。与传统的平板扫描仪不同,旋转扫描仪通过旋转扫描头或整个装置来进行扫描。这种扫描方式可以快速且精确地捕捉整个文档或图像。
旋转扫描仪通常由以下几个主要部件组成:
1、扫描头:负责对文档或图像进行光学扫描。扫描头通常包括光学传感器和镜头系统。
2、旋转机构:将扫描头安装在一个能够旋转的平台或轴上,使其能够沿着文档或图像的圆周方向进行扫描。
3、控制系统:用于控制扫描头的运动和采集图像的参数设置。包括电路、传感器和软件。
使用旋转扫描仪可以快速地获取大型文档或图像的全貌,如地图、蓝图、报纸等。它们广泛应用于建筑、工程、制造、档案管理、艺术品保护和数字化等领域,提高了扫描效率和准确性。
示例一:
/** * @file * @author [Krishna Vedala](https://github.com/kvedala) * @brief Implementation of * [Spirograph](https://en.wikipedia.org/wiki/Spirograph) * * @details * Implementation of the program is based on the geometry shown in the figure * below: * * <a * href="https://commons.wikimedia.org/wiki/File:Resonance_Cascade.svg" rel="external nofollow" ><img * src="https://upload.wikimedia.org/wikipedia/commons/3/39/Resonance_Cascade.svg" * alt="Spirograph geometry from Wikipedia" style="width: 250px"/></a> */ #ifdef USE_GLUT #ifdef __APPLE__ #include <GLUT/glut.h> // include path on Macs is different #else #include <GL/glut.h> #endif // __APPLE__ #endif #define _USE_MATH_DEFINES /**< required for MSVC compiler */ #include <array> #include <cmath> #include <cstdlib> #include <ctime> #include <fstream> #include <iomanip> #include <iostream> #include <sstream> #ifdef _OPENMP #include <omp.h> #endif /** * @namespace spirograph Functions related to spirograph.cpp */ namespace spirograph { /** Generate spirograph curve into arrays `x` and `y` such that the i^th point * in 2D is represented by `(x[i],y[i])`. The generating function is given by: * \f{eqnarray*}{ * x &=& R\left[ (1-k) \cos (t) + l\cdot k\cdot\cos \left(\frac{1-k}{k}t\right) * \right]\\ * y &=& R\left[ (1-k) \sin (t) - l\cdot k\cdot\sin \left(\frac{1-k}{k}t\right) * \right] \f} * where * * \f$R\f$ is the scaling parameter that we will consider \f$=1\f$ * * \f$l=\frac{\rho}{r}\f$ is the relative distance of marker from the centre * of inner circle and \f$0\le l\le1\f$ * * \f$\rho\f$ is physical distance of marker from centre of inner circle * * \f$r\f$ is the radius of inner circle * * \f$k=\frac{r}{R}\f$ is the ratio of radius of inner circle to outer circle * and \f$0<k<1\f$ * * \f$R\f$ is the radius of outer circle * * \f$t\f$ is the angle of rotation of the point i.e., represents the time * parameter * * Since we are considering ratios, the actual values of \f$r\f$ and * \f$R\f$ are immaterial. * * @tparam N number of points = size of array * @param [out] points Array of 2D points represented as std::pair * @param l the relative distance of marker from the centre of * inner circle and \f$0\le l\le1\f$ * @param k the ratio of radius of inner circle to outer circle and \f$0<k<1\f$ * @param rot the number of rotations to perform (can be fractional value) */ template <std::size_t N> void spirograph(std::array<std::pair<double, double>, N> *points, double l, double k, double rot) { double dt = rot * 2.f * M_PI / N; double R = 1.f; const double k1 = 1.f - k; int32_t step = 0; #ifdef _OPENMP #pragma omp for #endif for (step = 0; step < N; step++) { double t = dt * step; double first = R * (k1 * std::cos(t) + l * k * std::cos(k1 * t / k)); double second = R * (k1 * std::sin(t) - l * k * std::sin(k1 * t / k)); points[0][step].first = first; points[0][step].second = second; } } /** * @brief Test function to save resulting points to a CSV file. * */ void test() { const size_t N = 500; double l = 0.3, k = 0.75, rot = 10.; std::stringstream fname; fname << std::setw(3) << "spirograph_" << l << "_" << k << "_" << rot << ".csv"; std::ofstream fp(fname.str()); if (!fp.is_open()) { perror(fname.str().c_str()); exit(EXIT_FAILURE); } std::array<std::pair<double, double>, N> points; spirograph(&points, l, k, rot); for (size_t i = 0; i < N; i++) { fp << points[i].first << "," << points[i].first; if (i < N - 1) { fp << '\n'; } } fp.close(); } #ifdef USE_GLUT static bool paused = 0; /**< flag to set pause/unpause animation */ static const int animation_speed = 25; /**< animation delate in ms */ static const double step = 0.01; /**< animation step size */ static double l_ratio = step * 10; /**< the l-ratio defined in docs */ static double k_ratio = step; /**< the k-ratio defined in docs */ static const double num_rot = 20.; /**< number of rotations to simulate */ /** A wrapper that is not available in all GLUT implementations. */ static inline void glutBitmapString(void *font, char *message) { for (char *ch = message; *ch != '\0'; ch++) glutBitmapCharacter(font, *ch); } /** * @brief Function to graph (x,y) points on the OpenGL graphics window. * * @tparam N number of points = size of array * @param [in] points Array of 2D points represented as std::pair * @param l the relative distance of marker from the centre of * inner circle and \f$0\le l\le1\f$ to display info * @param k the ratio of radius of inner circle to outer circle and \f$0<k<1\f$ * to display info */ template <size_t N> void display_graph(const std::array<std::pair<double, double>, N> &points, double l, double k) { glClearColor(1.0f, 1.0f, 1.0f, 0.0f); // Set background color to white and opaque glClear(GL_COLOR_BUFFER_BIT); // Clear the color buffer (background) glBegin(GL_LINES); // draw line segments glColor3f(0.f, 0.f, 1.f); // blue glPointSize(2.f); // point size in pixels for (size_t i = 1; i < N; i++) { glVertex2f(points[i - 1].first, points[i - 1].second); // line from glVertex2f(points[i].first, points[i].second); // line to } glEnd(); glColor3f(0.f, 0.f, 0.f); std::stringstream buffer; buffer << std::setw(3) << "l = " << l; glRasterPos2f(-.85, .85); glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24, const_cast<char *>(buffer.str().c_str())); buffer.str(""); buffer.clear(); buffer << std::setw(3) << "k = " << k; glRasterPos2f(-.85, .70); glutBitmapString(GLUT_BITMAP_TIMES_ROMAN_24, const_cast<char *>(buffer.str().c_str())); glutSwapBuffers(); } /** * @brief Test function with animation * */ void test2() { const size_t N = 5000; // number of samples static bool direction1 = true; // increment if true, otherwise decrement static bool direction2 = true; // increment if true, otherwise decrement std::array<std::pair<double, double>, N> points; spirograph(&points, l_ratio, k_ratio, num_rot); display_graph(points, l_ratio, k_ratio); if (paused) // if paused, do not update l_ratio and k_ratio return; if (direction1) { // increment k_ratio if (k_ratio >= (1.f - step)) // maximum limit direction1 = false; // reverse direction of k_ratio else k_ratio += step; } else { // decrement k_ratio if (k_ratio <= step) { // minimum limit direction1 = true; // reverse direction of k_ratio if (direction2) { // increment l_ratio if (l_ratio >= (1.f - step)) // max limit of l_ratio direction2 = false; // reverse direction of l_ratio else l_ratio += step; } else { // decrement l_ratio if (l_ratio <= step) // minimum limit of l_ratio direction2 = true; // reverse direction of l_ratio else l_ratio -= step; } } else { // no min limit of k_ratio k_ratio -= step; } } } /** * @brief GLUT timer callback function to add animation delay. */ void timer_cb(int t) { glutTimerFunc(animation_speed, timer_cb, 0); glutPostRedisplay(); } /** * @brief Keypress event call back function. * * @param key ID of the key pressed * @param x mouse pointer position at event * @param y mouse pointer position at event */ void keyboard_cb(unsigned char key, int x, int y) { switch (key) { case ' ': // spacebar toggles pause paused = !paused; // toggle break; case GLUT_KEY_UP: case '+': // up arrow key k_ratio += step; break; case GLUT_KEY_DOWN: case '_': // down arrow key k_ratio -= step; break; case GLUT_KEY_RIGHT: case '=': // left arrow key l_ratio += step; break; case GLUT_KEY_LEFT: case '-': // right arrow key l_ratio -= step; break; case 0x1B: // escape key exits exit(EXIT_SUCCESS); default: return; } } #endif } // namespace spirograph /** Main function */ int main(int argc, char **argv) { spirograph::test(); #ifdef USE_GLUT glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE); glutCreateWindow("Spirograph"); glutInitWindowSize(400, 400); // glutIdleFunc(glutPostRedisplay); glutTimerFunc(spirograph::animation_speed, spirograph::timer_cb, 0); glutKeyboardFunc(spirograph::keyboard_cb); glutDisplayFunc(spirograph::test2); glutMainLoop(); #endif return 0; }
示例二:
请注意旋转扫描仪的具体实现取决于您选择设备和供应商特定的API。以下是一个简单示例,演示了如何使用C++与旋转扫描仪进行通信。
#include <iostream> // 模拟扫描仪类 class Scanner { public: // 初始化扫描仪 bool initialize() { // 连接扫描仪设备 // 调用底层API代码 std::cout << "Scanner initialization complete." << std::endl; return true; } // 扫描文档 bool scan() { // 执行扫描操作 // 调用底层API代码 std::cout << "Scanning document..." << std::endl; // 模拟扫描完成后的图像处理 std::cout << "Document scanned successfully." << std::endl; return true; } }; int main() { // 创建扫描仪对象 Scanner scanner; // 初始化扫描仪 if (!scanner.initialize()) { std::cout << "Failed to initialize scanner." << std::endl; return 1; } // 扫描文档 if (!scanner.scan()) { std::cout << "Failed to scan document." << std::endl; return 1; } return 0; }
在上面的示例代码中,我们使用了一个简单的Scanner类来模拟扫描仪的行为。在主函数中,我们创建了一个Scanner对象,然后调用其initialize()方法进行初始化,接着调用scan()方法进行文档扫描。
注意,这仅仅只是一个简单的示例,用于演示与旋转扫描仪的通信。实际的实现可能会涉及更多的API调用和图像处理步骤,具体取决于扫描仪供应商和其所使用的API。您需要根据具体设备和API文档进行适当的调整。
以上就是C++实现旋转扫描仪的示例代码的详细内容,更多关于C++旋转扫描仪的资料请关注脚本之家其它相关文章!