java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Java深度优先遍历

Java深度优先遍历解决排列组合问题详解

作者:小星星*

这篇文章主要介绍了Java深度优先遍历解决排列组合问题详解,深度优先搜索是递归过程,带有回退操作,因此需要使用栈存储访问的路径信息,当访问到的当前顶点没有可以前进的邻接顶点时,需要进行出栈操作,将当前位置回退至出栈元素位置,需要的朋友可以参考下

深度优先遍历-解决排列组合问题

问题1

假设袋子里有编号为1,2,…,m这m个球。现在每次从袋子中取一个球记下编号,放回袋中再取,取n次作为一组,枚举所有可能的情况。

分析: 每一次取都有m种可能的情况,因此一共有 m n m^n mn种情况。 这里我们取m = 3, n = 4,则有 3 4 3^4 34种不同的情况。

代码:

import java.util.Stack;
public class Test {
    static int cnt = 0;
    static Stack<Integer> s = new Stack<Integer>();
    /**
     * 递归方法,当实际选取的小球数目与要求选取的小球数目相同时,跳出递归
     * @param minv - 小球编号的最小值
     * @param maxv - 小球编号的最大值
     * @param curnum - 当前已经确定的小球的个数
     * @param maxnum - 要选取的小球的数目
     */
    public static void kase1(int minv,int maxv,int curnum, int maxnum){
        if(curnum == maxnum){
            cnt++;
            System.out.println(s);
            return;
        }
        for(int i = minv; i <= maxv; i++){
            s.push(i);
            kase1(minv, maxv, curnum+1, maxnum);
            s.pop();
        }
    }
    public static void main(String[] args){
        kase1(1, 3, 0, 4);
        System.out.println(cnt);
    }
}

输出:

[1, 1, 1, 1]
[1, 1, 1, 2]
[1, 1, 1, 3]
[1, 1, 2, 1]
[1, 1, 2, 2]
[1, 1, 2, 3]
[1, 1, 3, 1]
[1, 1, 3, 2]
[1, 1, 3, 3]
[1, 2, 1, 1]
[1, 2, 1, 2]
[1, 2, 1, 3]
[1, 2, 2, 1]
[1, 2, 2, 2]
[1, 2, 2, 3]
[1, 2, 3, 1]
[1, 2, 3, 2]
[1, 2, 3, 3]
[1, 3, 1, 1]
[1, 3, 1, 2]
[1, 3, 1, 3]
[1, 3, 2, 1]
[1, 3, 2, 2]
[1, 3, 2, 3]
[1, 3, 3, 1]
[1, 3, 3, 2]
[1, 3, 3, 3]
[2, 1, 1, 1]
[2, 1, 1, 2]
[2, 1, 1, 3]
[2, 1, 2, 1]
[2, 1, 2, 2]
[2, 1, 2, 3]
[2, 1, 3, 1]
[2, 1, 3, 2]
[2, 1, 3, 3]
[2, 2, 1, 1]
[2, 2, 1, 2]
[2, 2, 1, 3]
[2, 2, 2, 1]
[2, 2, 2, 2]
[2, 2, 2, 3]
[2, 2, 3, 1]
[2, 2, 3, 2]
[2, 2, 3, 3]
[2, 3, 1, 1]
[2, 3, 1, 2]
[2, 3, 1, 3]
[2, 3, 2, 1]
[2, 3, 2, 2]
[2, 3, 2, 3]
[2, 3, 3, 1]
[2, 3, 3, 2]
[2, 3, 3, 3]
[3, 1, 1, 1]
[3, 1, 1, 2]
[3, 1, 1, 3]
[3, 1, 2, 1]
[3, 1, 2, 2]
[3, 1, 2, 3]
[3, 1, 3, 1]
[3, 1, 3, 2]
[3, 1, 3, 3]
[3, 2, 1, 1]
[3, 2, 1, 2]
[3, 2, 1, 3]
[3, 2, 2, 1]
[3, 2, 2, 2]
[3, 2, 2, 3]
[3, 2, 3, 1]
[3, 2, 3, 2]
[3, 2, 3, 3]
[3, 3, 1, 1]
[3, 3, 1, 2]
[3, 3, 1, 3]
[3, 3, 2, 1]
[3, 3, 2, 2]
[3, 3, 2, 3]
[3, 3, 3, 1]
[3, 3, 3, 2]
[3, 3, 3, 3]
81

问题2

假设袋子里有编号为1,2,…,m这m个球。先后从袋子中取出n个球,依次记录编号,枚举所有可能的情况。

分析: 这是排列问题,如果取出的球顺序不同,也是算不同的情况。因此应该有m∗(m−1)∗(m−2)∗...∗(m−n+1)种情况,即

种 这里取m = 5, n = 3。则有5*4*3种。 和问题1相比,唯一的区别是排列中不可以有重复。因此开了used数组用以标记是否已经访问。

代码:

import java.util.Stack;
public class Test {
    static int cnt = 0;
    static Stack<Integer> s = new Stack<Integer>();
    static boolean[] used = new boolean[10000];
    /**
     * 递归方法,当实际选取的小球数目与要求选取的小球数目相同时,跳出递归
     * @param minv - 小球编号的最小值
     * @param maxv - 小球编号的最大值
     * @param curnum - 当前已经确定的小球的个数
     * @param maxnum - 要选取的小球的数目
     */
    public static void kase2(int minv,int maxv,int curnum, int maxnum){
        if(curnum == maxnum){
            cnt++;
            System.out.println(s);
            return;
        }
        for(int i = minv; i <= maxv; i++){
            if(!used[i]){ //判断是否已经取过
                s.push(i);
                used[i] = true;
                kase2(minv, maxv, curnum+1, maxnum);
                s.pop();
                used[i] = false;
            }
        }
    }
    public static void main(String[] args){
        kase2(1, 5, 0, 3);
        System.out.println(cnt);
    }
}

输出:

[1, 2, 3]
[1, 2, 4]
[1, 2, 5]
[1, 3, 2]
[1, 3, 4]
[1, 3, 5]
[1, 4, 2]
[1, 4, 3]
[1, 4, 5]
[1, 5, 2]
[1, 5, 3]
[1, 5, 4]
[2, 1, 3]
[2, 1, 4]
[2, 1, 5]
[2, 3, 1]
[2, 3, 4]
[2, 3, 5]
[2, 4, 1]
[2, 4, 3]
[2, 4, 5]
[2, 5, 1]
[2, 5, 3]
[2, 5, 4]
[3, 1, 2]
[3, 1, 4]
[3, 1, 5]
[3, 2, 1]
[3, 2, 4]
[3, 2, 5]
[3, 4, 1]
[3, 4, 2]
[3, 4, 5]
[3, 5, 1]
[3, 5, 2]
[3, 5, 4]
[4, 1, 2]
[4, 1, 3]
[4, 1, 5]
[4, 2, 1]
[4, 2, 3]
[4, 2, 5]
[4, 3, 1]
[4, 3, 2]
[4, 3, 5]
[4, 5, 1]
[4, 5, 2]
[4, 5, 3]
[5, 1, 2]
[5, 1, 3]
[5, 1, 4]
[5, 2, 1]
[5, 2, 3]
[5, 2, 4]
[5, 3, 1]
[5, 3, 2]
[5, 3, 4]
[5, 4, 1]
[5, 4, 2]
[5, 4, 3]
60

问题3

从m个球里(编号为1,2,3…,m)一次取n个球,其中m>n,记录取出球的编号,枚举所有的可能性。

分析: 这是组合问题。应该有

 种可能性。 这里,如果取m = 8, n = 4. 则有

种可能。

代码:

import java.util.Stack;
public class Test {
    static int cnt = 0;
    static Stack<Integer> s = new Stack<Integer>();
    /**
     * 递归方法,当前已抽取的小球个数与要求抽取小球个数相同时,退出递归
     * @param curnum - 当前已经抓取的小球数目
     * @param curmaxv - 当前已经抓取小球中最大的编号
     * @param maxnum - 需要抓取小球的数目
     * @param maxv - 待抓取小球中最大的编号
     */
    public static void kase3(int curnum, int curmaxv,  int maxnum, int maxv){
        if(curnum == maxnum){
            cnt++;
            System.out.println(s);
            return;
        }
        for(int i = curmaxv + 1; i <= maxv; i++){ // i <= maxv - maxnum + curnum + 1
            s.push(i);
            kase3(curnum + 1, i, maxnum, maxv);
            s.pop();
        }
    }
    public static void main(String[] args){
        kase3(0, 0, 4, 8);
        System.out.println(cnt);
    }
}

输出:

[1, 2, 3, 4]
[1, 2, 3, 5]
[1, 2, 3, 6]
[1, 2, 3, 7]
[1, 2, 3, 8]
[1, 2, 4, 5]
[1, 2, 4, 6]
[1, 2, 4, 7]
[1, 2, 4, 8]
[1, 2, 5, 6]
[1, 2, 5, 7]
[1, 2, 5, 8]
[1, 2, 6, 7]
[1, 2, 6, 8]
[1, 2, 7, 8]
[1, 3, 4, 5]
[1, 3, 4, 6]
[1, 3, 4, 7]
[1, 3, 4, 8]
[1, 3, 5, 6]
[1, 3, 5, 7]
[1, 3, 5, 8]
[1, 3, 6, 7]
[1, 3, 6, 8]
[1, 3, 7, 8]
[1, 4, 5, 6]
[1, 4, 5, 7]
[1, 4, 5, 8]
[1, 4, 6, 7]
[1, 4, 6, 8]
[1, 4, 7, 8]
[1, 5, 6, 7]
[1, 5, 6, 8]
[1, 5, 7, 8]
[1, 6, 7, 8]
[2, 3, 4, 5]
[2, 3, 4, 6]
[2, 3, 4, 7]
[2, 3, 4, 8]
[2, 3, 5, 6]
[2, 3, 5, 7]
[2, 3, 5, 8]
[2, 3, 6, 7]
[2, 3, 6, 8]
[2, 3, 7, 8]
[2, 4, 5, 6]
[2, 4, 5, 7]
[2, 4, 5, 8]
[2, 4, 6, 7]
[2, 4, 6, 8]
[2, 4, 7, 8]
[2, 5, 6, 7]
[2, 5, 6, 8]
[2, 5, 7, 8]
[2, 6, 7, 8]
[3, 4, 5, 6]
[3, 4, 5, 7]
[3, 4, 5, 8]
[3, 4, 6, 7]
[3, 4, 6, 8]
[3, 4, 7, 8]
[3, 5, 6, 7]
[3, 5, 6, 8]
[3, 5, 7, 8]
[3, 6, 7, 8]
[4, 5, 6, 7]
[4, 5, 6, 8]
[4, 5, 7, 8]
[4, 6, 7, 8]
[5, 6, 7, 8]
70

到此这篇关于Java深度优先遍历解决排列组合问题详解的文章就介绍到这了,更多相关Java深度优先遍历内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文