C#基于ScottPlot实现可视化的示例代码
作者:mingupupup
前言
上一篇文章跟大家分享了用NumSharp实现简单的线性回归,但是没有进行可视化,可能对拟合的过程没有直观的感受,因此今天跟大家介绍一下使用C#基于Scottplot进行可视化,当然Python的代码,我也会同步进行可视化。
Python代码进行可视化
Python代码用matplotlib做了可视化,我就不具体介绍了。
修改之后的python代码如下:
#The optimal values of m and b can be actually calculated with way less effort than doing a linear regression. #this is just to demonstrate gradient descent import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation # y = mx + b # m is slope, b is y-intercept def compute_error_for_line_given_points(b, m, points): totalError = 0 for i in range(0, len(points)): x = points[i, 0] y = points[i, 1] totalError += (y - (m * x + b)) ** 2 return totalError / float(len(points)) def step_gradient(b_current, m_current, points, learningRate): b_gradient = 0 m_gradient = 0 N = float(len(points)) for i in range(0, len(points)): x = points[i, 0] y = points[i, 1] b_gradient += -(2/N) * (y - ((m_current * x) + b_current)) m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current)) new_b = b_current - (learningRate * b_gradient) new_m = m_current - (learningRate * m_gradient) return [new_b, new_m] def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations): b = starting_b m = starting_m args_data = [] for i in range(num_iterations): b, m = step_gradient(b, m, np.array(points), learning_rate) args_data.append((b,m)) return args_data if __name__ == '__main__': points = np.genfromtxt("data.csv", delimiter=",") learning_rate = 0.0001 initial_b = 0 # initial y-intercept guess initial_m = 0 # initial slope guess num_iterations = 10 print ("Starting gradient descent at b = {0}, m = {1}, error = {2}".format(initial_b, initial_m, compute_error_for_line_given_points(initial_b, initial_m, points))) print ("Running...") args_data = gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations) b = args_data[-1][0] m = args_data[-1][1] print ("After {0} iterations b = {1}, m = {2}, error = {3}".format(num_iterations, b, m, compute_error_for_line_given_points(b, m, points))) data = np.array(points).reshape(100,2) x1 = data[:,0] y1 = data[:,1] x2 = np.linspace(20, 80, 100) y2 = initial_m * x2 + initial_b data2 = np.array(args_data) b_every = data2[:,0] m_every = data2[:,1] # 创建图形和轴 fig, ax = plt.subplots() line1, = ax.plot(x1, y1, 'ro') line2, = ax.plot(x2,y2) # 添加标签和标题 plt.xlabel('x') plt.ylabel('y') plt.title('Graph of y = mx + b') # 添加网格 plt.grid(True) # 定义更新函数 def update(frame): line2.set_ydata(m_every[frame] * x2 + b_every[frame]) ax.set_title(f'{frame} Graph of y = {m_every[frame]:.2f}x + {b_every[frame]:.2f}') # 创建动画 animation = FuncAnimation(fig, update, frames=len(data2), interval=500) # 显示动画 plt.show()
实现的效果如下所示:
C#代码进行可视化
这是本文重点介绍的内容,本文的C#代码通过Scottplot进行可视化。
Scottplot简介
ScottPlot 是一个免费的开源绘图库,用于 .NET,可以轻松以交互方式显示大型数据集。
控制台程序可视化
首先我先介绍一下在控制台程序中进行可视化。
首先添加Scottplot包:
将上篇文章中的C#代码修改如下:
using NumSharp; namespace LinearRegressionDemo { internal class Program { static void Main(string[] args) { //创建double类型的列表 List<double> Array = new List<double>(); List<double> ArgsList = new List<double>(); // 指定CSV文件的路径 string filePath = "你的data.csv路径"; // 调用ReadCsv方法读取CSV文件数据 Array = ReadCsv(filePath); var array = np.array(Array).reshape(100,2); double learning_rate = 0.0001; double initial_b = 0; double initial_m = 0; double num_iterations = 10; Console.WriteLine($"Starting gradient descent at b = {initial_b}, m = {initial_m}, error = {compute_error_for_line_given_points(initial_b, initial_m, array)}"); Console.WriteLine("Running..."); ArgsList = gradient_descent_runner(array, initial_b, initial_m, learning_rate, num_iterations); double b = ArgsList[ArgsList.Count - 2]; double m = ArgsList[ArgsList.Count - 1]; Console.WriteLine($"After {num_iterations} iterations b = {b}, m = {m}, error = {compute_error_for_line_given_points(b, m, array)}"); Console.ReadLine(); var x1 = array[$":", 0]; var y1 = array[$":", 1]; var y2 = m * x1 + b; ScottPlot.Plot myPlot = new(400, 300); myPlot.AddScatterPoints(x1.ToArray<double>(), y1.ToArray<double>(), markerSize: 5); myPlot.AddScatter(x1.ToArray<double>(), y2.ToArray<double>(), markerSize: 0); myPlot.Title($"y = {m:0.00}x + {b:0.00}"); myPlot.SaveFig("图片.png"); } static List<double> ReadCsv(string filePath) { List<double> array = new List<double>(); try { // 使用File.ReadAllLines读取CSV文件的所有行 string[] lines = File.ReadAllLines(filePath); // 遍历每一行数据 foreach (string line in lines) { // 使用逗号分隔符拆分每一行的数据 string[] values = line.Split(','); // 打印每一行的数据 foreach (string value in values) { array.Add(Convert.ToDouble(value)); } } } catch (Exception ex) { Console.WriteLine("发生错误: " + ex.Message); } return array; } public static double compute_error_for_line_given_points(double b,double m,NDArray array) { double totalError = 0; for(int i = 0;i < array.shape[0];i++) { double x = array[i, 0]; double y = array[i, 1]; totalError += Math.Pow((y - (m*x+b)),2); } return totalError / array.shape[0]; } public static double[] step_gradient(double b_current,double m_current,NDArray array,double learningRate) { double[] args = new double[2]; double b_gradient = 0; double m_gradient = 0; double N = array.shape[0]; for (int i = 0; i < array.shape[0]; i++) { double x = array[i, 0]; double y = array[i, 1]; b_gradient += -(2 / N) * (y - ((m_current * x) + b_current)); m_gradient += -(2 / N) * x * (y - ((m_current * x) + b_current)); } double new_b = b_current - (learningRate * b_gradient); double new_m = m_current - (learningRate * m_gradient); args[0] = new_b; args[1] = new_m; return args; } public static List<double> gradient_descent_runner(NDArray array, double starting_b, double starting_m, double learningRate,double num_iterations) { double[] args = new double[2]; List<double> argsList = new List<double>(); args[0] = starting_b; args[1] = starting_m; for(int i = 0 ; i < num_iterations; i++) { args = step_gradient(args[0], args[1], array, learningRate); argsList.AddRange(args); } return argsList; } } }
然后得到的图片如下所示:
在以上代码中需要注意的地方:
var x1 = array[$":", 0]; var y1 = array[$":", 1];
是在使用NumSharp中的切片,x1表示所有行的第一列,y1表示所有行的第二列。
当然我们不满足于只是保存图片,在控制台应用程序中,再添加一个 ScottPlot.WinForms包:
右键控制台项目选择属性,将目标OS改为Windows:
将上述代码中的
myPlot.SaveFig("图片.png");
修改为:
var viewer = new ScottPlot.FormsPlotViewer(myPlot); viewer.ShowDialog();
再次运行结果如下:
winform进行可视化
我也想像Python代码中那样画动图,因此做了个winform程序进行演示。
首先创建一个winform,添加ScottPlot.WinForms包,然后从工具箱中添加FormsPlot这个控件:
有两种方法实现,第一种方法用了定时器:
using NumSharp; namespace WinFormDemo { public partial class Form1 : Form { System.Windows.Forms.Timer updateTimer = new System.Windows.Forms.Timer(); int num_iterations; int count = 0; NDArray? x1, y1, b_each, m_each; public Form1() { InitializeComponent(); } private void button1_Click(object sender, EventArgs e) { StartLinearRegression(); } public void StartLinearRegression() { //创建double类型的列表 List<double> Array = new List<double>(); List<double> ArgsList = new List<double>(); // 指定CSV文件的路径 string filePath = "你的data.csv路径"; // 调用ReadCsv方法读取CSV文件数据 Array = ReadCsv(filePath); var array = np.array(Array).reshape(100, 2); double learning_rate = 0.0001; double initial_b = 0; double initial_m = 0; num_iterations = 10; ArgsList = gradient_descent_runner(array, initial_b, initial_m, learning_rate, num_iterations); x1 = array[$":", 0]; y1 = array[$":", 1]; var argsArr = np.array(ArgsList).reshape(num_iterations, 2); b_each = argsArr[$":", 0]; m_each = argsArr[$":", 1]; double b = b_each[-1]; double m = m_each[-1]; var y2 = m * x1 + b; formsPlot1.Plot.AddScatterPoints(x1.ToArray<double>(), y1.ToArray<double>(), markerSize: 5); //formsPlot1.Plot.AddScatter(x1.ToArray<double>(), y2.ToArray<double>(), markerSize: 0); formsPlot1.Render(); } static List<double> ReadCsv(string filePath) { List<double> array = new List<double>(); try { // 使用File.ReadAllLines读取CSV文件的所有行 string[] lines = File.ReadAllLines(filePath); // 遍历每一行数据 foreach (string line in lines) { // 使用逗号分隔符拆分每一行的数据 string[] values = line.Split(','); // 打印每一行的数据 foreach (string value in values) { array.Add(Convert.ToDouble(value)); } } } catch (Exception ex) { Console.WriteLine("发生错误: " + ex.Message); } return array; } public static double compute_error_for_line_given_points(double b, double m, NDArray array) { double totalError = 0; for (int i = 0; i < array.shape[0]; i++) { double x = array[i, 0]; double y = array[i, 1]; totalError += Math.Pow((y - (m * x + b)), 2); } return totalError / array.shape[0]; } public static double[] step_gradient(double b_current, double m_current, NDArray array, double learningRate) { double[] args = new double[2]; double b_gradient = 0; double m_gradient = 0; double N = array.shape[0]; for (int i = 0; i < array.shape[0]; i++) { double x = array[i, 0]; double y = array[i, 1]; b_gradient += -(2 / N) * (y - ((m_current * x) + b_current)); m_gradient += -(2 / N) * x * (y - ((m_current * x) + b_current)); } double new_b = b_current - (learningRate * b_gradient); double new_m = m_current - (learningRate * m_gradient); args[0] = new_b; args[1] = new_m; return args; } public static List<double> gradient_descent_runner(NDArray array, double starting_b, double starting_m, double learningRate, double num_iterations) { double[] args = new double[2]; List<double> argsList = new List<double>(); args[0] = starting_b; args[1] = starting_m; for (int i = 0; i < num_iterations; i++) { args = step_gradient(args[0], args[1], array, learningRate); argsList.AddRange(args); } return argsList; } private void button2_Click(object sender, EventArgs e) { // 初始化定时器 updateTimer.Interval = 1000; // 设置定时器触发间隔(毫秒) updateTimer.Tick += UpdateTimer_Tick; updateTimer.Start(); } private void UpdateTimer_Tick(object? sender, EventArgs e) { if (count >= num_iterations) { updateTimer.Stop(); } else { UpdatePlot(count); } count++; } public void UpdatePlot(int count) { double b = b_each?[count]; double m = m_each?[count]; var y2 = m * x1 + b; formsPlot1.Plot.Clear(); formsPlot1.Plot.AddScatterPoints(x1?.ToArray<double>(), y1?.ToArray<double>(), markerSize: 5); formsPlot1.Plot.AddScatter(x1?.ToArray<double>(), y2.ToArray<double>(), markerSize: 0); formsPlot1.Plot.Title($"第{count + 1}次迭代:y = {m:0.00}x + {b:0.00}"); formsPlot1.Render(); } private void button3_Click(object sender, EventArgs e) { updateTimer.Stop(); } private void Form1_Load(object sender, EventArgs e) { } } }
简单介绍一下思路,首先创建List<double> argsList
用来保存每次迭代生成的参数b、m,然后用
var argsArr = np.array(ArgsList).reshape(num_iterations, 2);
将argsList
通过np.array()方法转化为NDArray,然后再调用reshape方法,转化成行数等于迭代次数,列数为2,即每一行对应一组参数值b、m。
b_each = argsArr[$":", 0]; m_each = argsArr[$":", 1];
argsArr[$":", 0]
表示每一行中第一列的值,也就是每一个b,argsArr[$":", 1]
表示每一行中第二列的值。
double b = b_each[-1]; double m = m_each[-1];
b_each[-1]
用了NumSharp的功能表示b_each
最后一个元素。
实现效果如下所示:
另一种方法可以通过异步实现:
using NumSharp; namespace WinFormDemo { public partial class Form2 : Form { int num_iterations; NDArray? x1, y1, b_each, m_each; public Form2() { InitializeComponent(); } private void button1_Click(object sender, EventArgs e) { StartLinearRegression(); } public void StartLinearRegression() { //创建double类型的列表 List<double> Array = new List<double>(); List<double> ArgsList = new List<double>(); // 指定CSV文件的路径 string filePath = "你的data.csv路径"; // 调用ReadCsv方法读取CSV文件数据 Array = ReadCsv(filePath); var array = np.array(Array).reshape(100, 2); double learning_rate = 0.0001; double initial_b = 0; double initial_m = 0; num_iterations = 10; ArgsList = gradient_descent_runner(array, initial_b, initial_m, learning_rate, num_iterations); x1 = array[$":", 0]; y1 = array[$":", 1]; var argsArr = np.array(ArgsList).reshape(num_iterations, 2); b_each = argsArr[$":", 0]; m_each = argsArr[$":", 1]; double b = b_each[-1]; double m = m_each[-1]; var y2 = m * x1 + b; formsPlot1.Plot.AddScatterPoints(x1.ToArray<double>(), y1.ToArray<double>(), markerSize: 5); formsPlot1.Render(); } static List<double> ReadCsv(string filePath) { List<double> array = new List<double>(); try { // 使用File.ReadAllLines读取CSV文件的所有行 string[] lines = File.ReadAllLines(filePath); // 遍历每一行数据 foreach (string line in lines) { // 使用逗号分隔符拆分每一行的数据 string[] values = line.Split(','); // 打印每一行的数据 foreach (string value in values) { array.Add(Convert.ToDouble(value)); } } } catch (Exception ex) { Console.WriteLine("发生错误: " + ex.Message); } return array; } public static double compute_error_for_line_given_points(double b, double m, NDArray array) { double totalError = 0; for (int i = 0; i < array.shape[0]; i++) { double x = array[i, 0]; double y = array[i, 1]; totalError += Math.Pow((y - (m * x + b)), 2); } return totalError / array.shape[0]; } public static double[] step_gradient(double b_current, double m_current, NDArray array, double learningRate) { double[] args = new double[2]; double b_gradient = 0; double m_gradient = 0; double N = array.shape[0]; for (int i = 0; i < array.shape[0]; i++) { double x = array[i, 0]; double y = array[i, 1]; b_gradient += -(2 / N) * (y - ((m_current * x) + b_current)); m_gradient += -(2 / N) * x * (y - ((m_current * x) + b_current)); } double new_b = b_current - (learningRate * b_gradient); double new_m = m_current - (learningRate * m_gradient); args[0] = new_b; args[1] = new_m; return args; } public static List<double> gradient_descent_runner(NDArray array, double starting_b, double starting_m, double learningRate, double num_iterations) { double[] args = new double[2]; List<double> argsList = new List<double>(); args[0] = starting_b; args[1] = starting_m; for (int i = 0; i < num_iterations; i++) { args = step_gradient(args[0], args[1], array, learningRate); argsList.AddRange(args); } return argsList; } private void Form2_Load(object sender, EventArgs e) { } public async Task UpdateGraph() { for (int i = 0; i < num_iterations; i++) { double b = b_each?[i]; double m = m_each?[i]; var y2 = m * x1 + b; formsPlot1.Plot.Clear(); formsPlot1.Plot.AddScatterPoints(x1?.ToArray<double>(), y1?.ToArray<double>(), markerSize: 5); formsPlot1.Plot.AddScatter(x1?.ToArray<double>(), y2.ToArray<double>(), markerSize: 0); formsPlot1.Plot.Title($"第{i + 1}次迭代:y = {m:0.00}x + {b:0.00}"); formsPlot1.Render(); await Task.Delay(1000); } } private async void button2_Click(object sender, EventArgs e) { await UpdateGraph(); } } }
点击更新按钮开始执行异步任务:
private async void button2_Click(object sender, EventArgs e) { await UpdateGraph(); }
public async Task UpdateGraph() { for (int i = 0; i < num_iterations; i++) { double b = b_each?[i]; double m = m_each?[i]; var y2 = m * x1 + b; formsPlot1.Plot.Clear(); formsPlot1.Plot.AddScatterPoints(x1?.ToArray<double>(), y1?.ToArray<double>(), markerSize: 5); formsPlot1.Plot.AddScatter(x1?.ToArray<double>(), y2.ToArray<double>(), markerSize: 0); formsPlot1.Plot.Title($"第{i + 1}次迭代:y = {m:0.00}x + {b:0.00}"); formsPlot1.Render(); await Task.Delay(1000); }
实现效果如下:
以上就是C#基于ScottPlot实现可视化的示例代码的详细内容,更多关于C# ScottPlot可视化的资料请关注脚本之家其它相关文章!