java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > ArrayList源码

Java中的ArrayList集合源码解析

作者:初念初恋

这篇文章主要介绍了Java中的ArrayList集合源码解析,ArrayList是一种以数组实现的List,与数组相比,它具有动态扩展的能力,因此也可称之为动态数组,需要的朋友可以参考下

前言

ArrayList是一种以数组实现的List,与数组相比,它具有动态扩展的能力,因此也可称之为动态数组。

在ArrayList集合里面可以存储任何类型的数据, 而且它是一个顺序容器,存放的数据顺序就是和我们放入的顺序是一致的,而且它还允许我们放入null元素。

继承体系

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
	{...}

源码解析

属性

/**
	 * 默认容量
	 */
	private static final int DEFAULT_CAPACITY = 10;
	/**
	 * 空数组,如果传入的容量为0时使用
	 */
	private static final Object[] EMPTY_ELEMENTDATA = {};
	/**
	 * 空数组,传传入容量时使用,添加第一个元素的时候会重新初始为默认容量大小
	 */
	private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
	/**
	 * 存储元素的数组
	 */
	transient Object[] elementData; // non-private to simplify nested class access
	/**
	 * 集合中元素的个数
	 */
	private int size;

(1)DEFAULT_CAPACITY:默认容量为10,也就是通过new ArrayList()创建时的默认容量。

(2)EMPTY_ELEMENTDATA:空的数组,这种是通过new ArrayList(0)创建时用的是这个空数组。

(3)DEFAULTCAPACITY_EMPTY_ELEMENTDATA:也是空数组,这种是通过new ArrayList()创建时用的是这个空数组,与EMPTY_ELEMENTDATA的区别是在添加第一个元素时使用这个空数组的会初始化为DEFAULT_CAPACITY(10)个元素。

(4)elementData:真正存放元素的地方。

(5)size:真正存储元素的个数,而不是elementData数组的长度。

为什么ArrayList的elementData数组要加上transient修饰?

由于ArrayList有自动扩容机制,所以ArrayList的elementData数组大小往往比现有的元素数量大,如果不加transient直接序列化的话会把数组中空余的位置也序列化了,浪费不少的空间。

ArrayList中重写了序列化和反序列化对应的writeObject和readObject方法,在遍历数组元素时,以 size 作为结束标志,只序列化ArrayList中已经存在的元素。

ArrayList(int initialCapacity)构造方法

public ArrayList(int initialCapacity) {
    if (initialCapacity > 0) {
        // 如果传入的初始容量大于0,就新建一个数组存储元素
        this.elementData = new Object[initialCapacity];
    } else if (initialCapacity == 0) {
        // 如果传入的初始容量等于0,使用空数组EMPTY_ELEMENTDATA
        this.elementData = EMPTY_ELEMENTDATA;
    } else {
        // 如果传入的初始容量小于0,抛出异常
        throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity);
    }
}

ArrayList()构造方法

public ArrayList() {
    // 如果没有传入初始容量,则使用空数组DEFAULTCAPACITY_EMPTY_ELEMENTDATA
    // 使用这个数组是在添加第一个元素的时候会扩容到默认大小10
    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}

ArrayList 构造方法

/**
* 把传入集合的元素初始化到ArrayList中
*/
public ArrayList(Collection<? extends E> c) {
    // 集合转数组
    elementData = c.toArray();
    if ((size = elementData.length) != 0) {
        // 检查c.toArray()返回的是不是Object[]类型,如果不是,重新拷贝成Object[].class类型
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, size, Object[].class);
    } else {
        // 如果c的空集合,则初始化为空数组EMPTY_ELEMENTDATA
        this.elementData = EMPTY_ELEMENTDATA;
    }
}

add(E e)方法

添加元素到末尾,平均时间复杂度为O(1)。

public boolean add(E e) {
    // 检查是否需要扩容
    ensureCapacityInternal(size + 1);
    // 把元素插入到最后一位
    elementData[size++] = e;
    return true;
}
private void ensureCapacityInternal(int minCapacity) {
    ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private static int calculateCapacity(Object[] elementData, int minCapacity) {
    // 如果是空数组DEFAULTCAPACITY_EMPTY_ELEMENTDATA,就初始化为默认大小10
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
        return Math.max(DEFAULT_CAPACITY, minCapacity);
    }
    return minCapacity;
}
private void ensureExplicitCapacity(int minCapacity) {
    modCount++;
    if (minCapacity - elementData.length > 0)
        // 扩容
        grow(minCapacity);
}
private void grow(int minCapacity) {
    int oldCapacity = elementData.length;
    // 新容量为旧容量的1.5倍
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    // 如果新容量发现比需要的容量还小,则以需要的容量为准
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
    // 如果新容量已经超过最大容量了,则使用最大容量
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    // 以新容量拷贝出来一个新数组
    elementData = Arrays.copyOf(elementData, newCapacity);
}

add(int index, E element)方法

添加元素到指定位置,平均时间复杂度为O(n)。

public void add(int index, E element) {
    // 检查是否越界
    rangeCheckForAdd(index);
    // 检查是否需要扩容
    ensureCapacityInternal(size + 1);
    // 将inex及其之后的元素往后挪一位,则index位置处就空出来了
    System.arraycopy(elementData, index, elementData, index + 1,
                     size - index);
    // 将元素插入到index的位置
    elementData[index] = element;
    // 大小增1
    size++;
}
private void rangeCheckForAdd(int index) {
    if (index > size || index < 0)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}

ArrayList在新增的时候为什么慢?

通过以上的源码,我们可以看出ArrayList有指定index新增,也有直接新增的,在这之前他会有一步校验长度的判断ensureCapacityInternal,就是说如果长度不够,是需要扩容的。

在扩容的时候,老版本的jdk和8以后的版本是有区别的,8之后的效率更高了,采用了位运算,右移一位,其实就是除以2这个操作。int newCapacity = oldCapacity + (oldCapacity >> 1);新增后的数组容量是旧数组容量的1.5倍。

指定位置新增的时候,在校验之后的操作很简单,就是数组的copy,System.arraycopy(elementData, index, elementData, index + 1, size - index);,为了更好的解释,这里画个图,如下:

比如有下面这样一个数组我需要在index 4 的位置去新增一个元素 a

image-20220302112943491

从代码里面我们可以看到,它复制了一个数组,是从index 4 的位置开始的,然后把它放在了index 4+1 的位置

image-20220302113056958

给我们要新增的元素腾出了位置,然后在index的位置放入元素a就完成了新增的操作了。

image-20220302113127354

这只是在一个这么小的List里面操作,要是我去一个几百几千几万大小的List新增一个元素,那就需要后面所有的元素都复制,然后如果再涉及到扩容啥的就更慢了不是嘛。

addAll 方法

求两个集合的并集。

/**
* 将集合c中所有元素添加到当前ArrayList中
*/
public boolean addAll(Collection<? extends E> c) {
    // 将集合c转为数组
    Object[] a = c.toArray();
    int numNew = a.length;
    // 检查是否需要扩容
    ensureCapacityInternal(size + numNew);
    // 将c中元素全部拷贝到数组的最后
    System.arraycopy(a, 0, elementData, size, numNew);
    // 大小增加c的大小
    size += numNew;
    // 如果c不为空就返回true,否则返回false
    return numNew != 0;
}

get(int index)方法

获取指定索引位置的元素,时间复杂度为O(1)。

public E get(int index) {
    // 检查是否越界
    rangeCheck(index);
    // 返回数组index位置的元素
    return elementData(index);
}
private void rangeCheck(int index) {
    if (index >= size)
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
E elementData(int index) {
    return (E) elementData[index];
}

(1)检查索引是否越界,这里只检查是否越上界,如果越上界抛出IndexOutOfBoundsException异常,如果越下界抛出的是ArrayIndexOutOfBoundsException异常。

(2)返回索引位置处的元素;

remove(int index)方法

删除指定索引位置的元素,时间复杂度为O(n)。

public E remove(int index) {
    // 检查是否越界
    rangeCheck(index);
    modCount++;
    // 获取index位置的元素
    E oldValue = elementData(index);
    // 如果index不是最后一位,则将index之后的元素往前挪一位
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index, numMoved);
    // 将最后一个元素删除,帮助GC
    elementData[--size] = null; // clear to let GC do its work
    // 返回旧值
    return oldValue;
}

remove(Object o)方法

删除指定元素值的元素,时间复杂度为O(n)。

public boolean remove(Object o) {
    if (o == null) {
        // 遍历整个数组,找到元素第一次出现的位置,并将其快速删除
        for (int index = 0; index < size; index++)
            // 如果要删除的元素为null,则以null进行比较,使用==
            if (elementData[index] == null) {
                fastRemove(index);
                return true;
            }
    } else {
        // 遍历整个数组,找到元素第一次出现的位置,并将其快速删除
        for (int index = 0; index < size; index++)
            // 如果要删除的元素不为null,则进行比较,使用equals()方法
            if (o.equals(elementData[index])) {
                fastRemove(index);
                return true;
            }
    }
    return false;
}
private void fastRemove(int index) {
    // 少了一个越界的检查
    modCount++;
    // 如果index不是最后一位,则将index之后的元素往前挪一位
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index, numMoved);
    // 将最后一个元素删除,帮助GC
    elementData[--size] = null; // clear to let GC do its work
}

(1)找到第一个等于指定元素值的元素;

(2)快速删除,fastRemove(int index)相对于remove(int index)少了检查索引越界的操作。

retainAll方法

求两个集合的交集。

public boolean retainAll(Collection<?> c) {
    // 集合c不能为null
    Objects.requireNonNull(c);
    // 调用批量删除方法,这时complement传入true,表示删除不包含在c中的元素
    return batchRemove(c, true);
}
/**
* 批量删除元素
* complement为true表示删除c中不包含的元素
* complement为false表示删除c中包含的元素
*/
private boolean batchRemove(Collection<?> c, boolean complement) {
    final Object[] elementData = this.elementData;
    // 使用读写两个指针同时遍历数组
    // 读指针每次自增1,写指针放入元素的时候才加1
    // 这样不需要额外的空间,只需要在原有的数组上操作就可以了
    int r = 0, w = 0;
    boolean modified = false;
    try {
        // 遍历整个数组,如果c中包含该元素,则把该元素放到写指针的位置(以complement为准)
        for (; r < size; r++)
            if (c.contains(elementData[r]) == complement)
                elementData[w++] = elementData[r];
    } finally {
        // 正常来说r最后是等于size的,除非c.contains()抛出了异常
        if (r != size) {
            // 如果c.contains()抛出了异常,则把未读的元素都拷贝到写指针之后
            System.arraycopy(elementData, r,
                             elementData, w,
                             size - r);
            w += size - r;
        }
        if (w != size) {
            // 将写指针之后的元素置为空,帮助GC
            for (int i = w; i < size; i++)
                elementData[i] = null;
            modCount += size - w;
            // 新大小等于写指针的位置(因为每写一次写指针就加1,所以新大小正好等于写指针的位置)
            size = w;
            modified = true;
        }
    }
    // 有修改返回true
    return modified;
}

(1)遍历elementData数组;

(2)如果元素在 c 中,则把这个元素添加到 elementData 数组的 w 位置并将 w 位置往后移一位;

(3)遍历完之后,w 之前的元素都是两者共有的,w 之后(包含)的元素不是两者共有的;

(4)将 w 之后(包含)的元素置为null,方便 GC 回收;

removeAll

求两个集合的单方向差集,只保留当前集合中不在c中的元素,不保留在c中不在当前集体中的元素。

public boolean removeAll(Collection<?> c) {
    // 集合c不能为空
    Objects.requireNonNull(c);
    // 同样调用批量删除方法,这时complement传入false,表示删除包含在c中的元素
    return batchRemove(c, false);
}

与retainAll(Collection<?> c)方法类似,只是这里保留的是不在c中的元素。

总结

(1)ArrayList内部使用数组存储元素,扩容时,每次加一半的空间,ArrayList不会进行缩容。

(2)ArrayList支持随机访问,通过索引访问元素极快,时间复杂度为O(1)。

(3)ArrayList添加元素到尾部极快,平均时间复杂度为O(1)。

(4)ArrayList添加元素到中间比较慢,因为要搬移元素,平均时间复杂度为O(n)。

(5)ArrayList从尾部删除元素极快,时间复杂度为O(1)。

(6)ArrayList从中间删除元素比较慢,因为要搬移元素,平均时间复杂度为O(n)。

(7)ArrayList支持求并集,调用addAll(Collection<? extends E> c)方法即可。

(8)ArrayList支持求交集,调用retainAll(Collection<? extends E> c)方法即可。

(7)ArrayList支持求单向差集,调用removeAll(Collection<? extends E> c)方法即可。

到此这篇关于Java中的ArrayList集合源码解析的文章就介绍到这了,更多相关ArrayList源码内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文