java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > SparkSQL数据加载与保存

深入了解SparkSQL中数据的加载与保存

作者:shangjg3

这篇文章主要为大家详细介绍了SparkSQL中数据的加载与保存的相关知识,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以了解下

1 读取和保存文件

SparkSQL读取和保存的文件一般为三种,JSON文件、CSV文件和列式存储的文件,同时可以通过添加参数,来识别不同的存储和压缩格式。

1.1 CSV文件

1)代码实现

package com.atguigu.sparksql;
import com.atguigu.sparksql.Bean.User;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.*;
public class Test06_CSV {
    public static void main(String[] args) throws ClassNotFoundException {
        //1. 创建配置对象
        SparkConf conf = new SparkConf().setAppName("sparksql").setMaster("local[*]");
        //2. 获取sparkSession
        SparkSession spark = SparkSession.builder().config(conf).getOrCreate();
        //3. 编写代码
        DataFrameReader reader = spark.read();
        // 添加参数  读取csv
        Dataset<Row> userDS = reader
                .option("header", "true")//默认为false 不读取列名
                .option("sep",",") // 默认为, 列的分割
                // 不需要写压缩格式  自适应
                .csv("input/user.csv");
        userDS.show();
        // 转换为user的ds
        // 直接转换类型会报错  csv读取的数据都是string
//        Dataset<User> userDS1 = userDS.as(Encoders.bean(User.class));
        userDS.printSchema();
        Dataset<User> userDS1 = userDS.map(new MapFunction<Row, User>() {
            @Override
            public User call(Row value) throws Exception {
                return new User(Long.valueOf(value.getString(0)), value.getString(1));
            }
        }, Encoders.bean(User.class));
        userDS1.show();
        // 写出为csv文件
        DataFrameWriter<User> writer = userDS1.write();
        writer.option("header",";")
                .option("header","true")
//                .option("compression","gzip")// 压缩格式
                // 写出模式
                // append 追加
                // Ignore 忽略本次写出
                // Overwrite 覆盖写
                // ErrorIfExists 如果存在报错
                .mode(SaveMode.Append)
                .csv("output");
        //4. 关闭sparkSession
        spark.close();
    }
}

1.2 JSON文件

package com.atguigu.sparksql;

import com.atguigu.sparksql.Bean.User;
import org.apache.spark.SparkConf;
import org.apache.spark.sql.*;
public class Test07_JSON {

    public static void main(String[] args) {

        //1. 创建配置对象
        SparkConf conf = new SparkConf().setAppName("sparksql").setMaster("local[*]");

        //2. 获取sparkSession
        SparkSession spark = SparkSession.builder().config(conf).getOrCreate();

        //3. 编写代码
        Dataset<Row> json = spark.read().json("input/user.json");

        // json数据可以读取数据的数据类型
        Dataset<User> userDS = json.as(Encoders.bean(User.class));
        userDS.show();

        // 读取别的类型的数据也能写出为json
        DataFrameWriter<User> writer = userDS.write();
        writer.json("output1");

        //4. 关闭sparkSession
        spark.close();

    }

}

1.3 Parquet文件

列式存储的数据自带列分割。

package com.atguigu.sparksql;

import org.apache.spark.SparkConf;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
public class Test08_Parquet {

    public static void main(String[] args) {
        //1. 创建配置对象
        SparkConf conf = new SparkConf().setAppName("sparksql").setMaster("local[*]");

        //2. 获取sparkSession
        SparkSession spark = SparkSession.builder().config(conf).getOrCreate();

        //3. 编写代码
        Dataset<Row> json = spark.read().json("input/user.json");
        // 写出默认使用snappy压缩

//        json.write().parquet("output");

        // 读取parquet 自带解析  能够识别列名
        Dataset<Row> parquet = spark.read().parquet("output");
        parquet.printSchema();

        //4. 关闭sparkSession
        spark.close();
    }
}

2 与MySQL交互

1)导入依赖

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.27</version>
</dependency>

2)从MySQL读数据

package com.atguigu.sparksql;

import org.apache.spark.SparkConf;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import java.util.Properties;
public class Test09_Table {

    public static void main(String[] args) {

        //1. 创建配置对象
        SparkConf conf = new SparkConf().setAppName("sparksql").setMaster("local[*]");

        //2. 获取sparkSession
        SparkSession spark = SparkSession.builder().config(conf).getOrCreate();

        //3. 编写代码
        Dataset<Row> json = spark.read().json("input/user.json");

        // 添加参数

        Properties properties = new Properties();
        properties.setProperty("user","root");
        properties.setProperty("password","000000");

//        json.write()

//                // 写出模式针对于表格追加覆盖

//                .mode(SaveMode.Append)

//                .jdbc("jdbc:mysql://hadoop102:3306","gmall.testInfo",properties);

        Dataset<Row> jdbc = spark.read().jdbc("jdbc:mysql://hadoop102:3306", "gmall.testInfo", properties);
        jdbc.show();

        //4. 关闭sparkSession
        spark.close();
    }
}

3 与Hive交互

SparkSQL可以采用内嵌Hive(spark开箱即用的hive),也可以采用外部Hive。企业开发中,通常采用外部Hive。

3.1 Linux中的交互

1)添加MySQL连接驱动到spark-yarn的jars目录

[atguigu@hadoop102 spark-yarn]$ cp /opt/software/mysql-connector-java-5.1.27-bin.jar /opt/module/spark-yarn/jars

2)添加hive-site.xml文件到spark-yarn的conf目录

[atguigu@hadoop102 spark-yarn]$ cp /opt/module/hive/conf/hive-site.xml /opt/module/spark-yarn/conf

3)启动spark-sql的客户端即可

[atguigu@hadoop102 spark-yarn]$  bin/spark-sql --master yarn
spark-sql (default)> show tables;

3.2 IDEA中的交互

1)添加依赖

<dependencies>
    <dependency>
       <groupId>org.apache.spark</groupId>
       <artifactId>spark-sql_2.12</artifactId>
       <version>3.1</version>
    </dependency>
    <dependency>
       <groupId>mysql</groupId>
       <artifactId>mysql-connector-java</artifactId>
       <version>5.1.27</version>
    </dependency>
    <dependency>
       <groupId>org.apache.spark</groupId>
       <artifactId>spark-hive_2.12</artifactId>
       <version>3.1</version>
    </dependency>
    <dependency>
       <groupId>org.projectlombok</groupId>
       <artifactId>lombok</artifactId>
       <version>1.18.22</version>
    </dependency>
</dependencies>

2)拷贝hive-site.xml到resources目录(如果需要操作Hadoop,需要拷贝hdfs-site.xml、core-site.xml、yarn-site.xml)

3)代码实现

package com.atguigu.sparksql;

import org.apache.spark.SparkConf;
import org.apache.spark.sql.SparkSession;
public class Test10_Hive {

    public static void main(String[] args) {
        System.setProperty("HADOOP_USER_NAME","atguigu");

        //1. 创建配置对象
        SparkConf conf = new SparkConf().setAppName("sparksql").setMaster("local[*]");

        //2. 获取sparkSession
        SparkSession spark = SparkSession.builder()
                .enableHiveSupport()// 添加hive支持
                .config(conf).getOrCreate();

        //3. 编写代码

        spark.sql("show tables").show();
        spark.sql("create table user_info(name String,age bigint)");
        spark.sql("insert into table user_info values('zhangsan',10)");
        spark.sql("select * from user_info").show();

        //4. 关闭sparkSession
        spark.close();

    }

}

到此这篇关于深入了解SparkSQL中数据的加载与保存的文章就介绍到这了,更多相关SparkSQL数据加载与保存内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文