C#利用OpenCvSharp实现玉米粒计数
作者:天天代码码天天
这篇文章主要为大家详细介绍了C#如何结合OpenCVSharp4实现玉米粒计数,文中的示例代码简洁易懂,具有一定的学习价值,需要的小伙伴可以参考下
效果
项目
代码
using OpenCvSharp; using System; using System.Drawing; using System.Text; using System.Windows.Forms; namespace OpenCvSharp_Demo { public partial class frmMain : Form { public frmMain() { InitializeComponent(); } string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"; string image_path = ""; DateTime dt1 = DateTime.Now; DateTime dt2 = DateTime.Now; Mat image; Mat result_image; StringBuilder sb = new StringBuilder(); private void button1_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = fileFilter; if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null; pictureBox2.Image = null; textBox1.Text = ""; image_path = ofd.FileName; pictureBox1.Image = new Bitmap(image_path); image = new Mat(image_path); } private void Form1_Load(object sender, EventArgs e) { //test image_path = "test_img/1.jpg"; image = new Mat(image_path); pictureBox1.Image = new Bitmap(image_path); } private void button2_Click(object sender, EventArgs e) { if (image_path == "") { return; } textBox1.Text = "检测中,请稍等……"; pictureBox2.Image = null; Application.DoEvents(); result_image = image.Clone(); //二值化操作 Mat grayimg = new Mat(); Cv2.CvtColor(image, grayimg, ColorConversionCodes.BGR2GRAY); Mat BinaryImg = new Mat(); Cv2.Threshold(grayimg, BinaryImg, 240, 255, ThresholdTypes.Binary); //Cv2.ImShow("二值化", BinaryImg); //腐蚀 Mat kernel = Cv2.GetStructuringElement(MorphShapes.Rect, new OpenCvSharp.Size(15, 15)); Mat morhImage = new Mat(); Cv2.Dilate(BinaryImg, morhImage, kernel, null, 2); //Cv2.ImShow("morphology", morhImage); //距离变换:用于二值化图像中的每一个非零点距自己最近的零点的距离,距离变换图像上越亮的点,代表了这一点距离零点的距离越远 Mat dist = new Mat(); Cv2.BitwiseNot(morhImage, morhImage); /* OpenCV中,函数distanceTransform()用于计算图像中每一个非零点像素与其最近的零点像素之间的距离, 输出的是保存每一个非零点与最近零点的距离信息,图像上越亮的点,代表了离零点的距离越远。 用途: 可以根据距离变换的这个性质,经过简单的运算,用于细化字符的轮廓和查找物体质心(中心)。 */ /* 距离变换的处理图像通常都是二值图像,而二值图像其实就是把图像分为两部分,即背景和物体两部分,物体通常又称为前景目标。 通常我们把前景目标的灰度值设为255(即白色),背景的灰度值设为0(即黑色)。 所以定义中的非零像素点即为前景目标,零像素点即为背景。 所以图像中前景目标中的像素点距离背景越远,那么距离就越大,如果我们用这个距离值替换像素值,那么新生成的图像中这个点越亮。 */ //User:用户自定义 //L1: 曼哈顿距离 //L2: 欧式距离 //C: 棋盘距离 Cv2.DistanceTransform(morhImage, dist, DistanceTypes.L1, DistanceTransformMasks.Mask3); Cv2.Normalize(dist, dist, 0, 1.0, NormTypes.MinMax); //范围在0~1之间 //Cv2.ImShow("distance", dist); //形态学处理 Mat MorphImg = new Mat(); dist.ConvertTo(MorphImg, MatType.CV_8U); Cv2.Threshold(MorphImg, MorphImg, 0.99, 255, ThresholdTypes.Binary); //上图像素值在0~1之间 kernel = Cv2.GetStructuringElement(MorphShapes.Rect, new OpenCvSharp.Size(7, 3), new OpenCvSharp.Point(-1, -1)); Cv2.MorphologyEx(MorphImg, MorphImg, MorphTypes.Open, kernel); //开操作 //Cv2.ImShow("t-distance", MorphImg); //找到种子的轮廓区域 OpenCvSharp.Point[][] contours; HierarchyIndex[] hierarchly; Cv2.FindContours(MorphImg, out contours, out hierarchly, RetrievalModes.External, ContourApproximationModes.ApproxSimple, new OpenCvSharp.Point(0, 0)); Mat markers = Mat.Zeros(image.Size(), MatType.CV_8UC3); int x, y, w, h; Rect rect; for (int i = 0; i < contours.Length; i++) { // Cv2.DrawContours(markers, contours, i, Scalar.RandomColor(), 2, LineTypes.Link8, hierarchly); rect = Cv2.BoundingRect(contours[i]); x = rect.X; y = rect.Y; w = rect.Width; h = rect.Height; Cv2.Circle(result_image, x + w / 2, y + h / 2, 20, new Scalar(0, 0, 255), -1); if (i >= 9) { Cv2.PutText(result_image, (i + 1).ToString(), new OpenCvSharp.Point(x + w / 2 - 18, y + h / 2 + 8), HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 255, 0), 2); } else { Cv2.PutText(result_image, (i + 1).ToString(), new OpenCvSharp.Point(x + w / 2 - 8, y + h / 2 + 8), HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 255, 0), 2); } } textBox1.Text = "number of corns: " + contours.Length; pictureBox2.Image = new Bitmap(result_image.ToMemoryStream()); } private void pictureBox2_DoubleClick(object sender, EventArgs e) { Common.ShowNormalImg(pictureBox2.Image); } private void pictureBox1_DoubleClick(object sender, EventArgs e) { Common.ShowNormalImg(pictureBox1.Image); } } }
到此这篇关于C#利用OpenCvSharp实现玉米粒计数的文章就介绍到这了,更多相关C# OpenCvSharp计数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!