ConcurrentHashMap线程安全及实现原理实例解析
作者:jacheut
背景
- 线程不安全的HashMap
因为多线程环境下,使用Hashmap进行put操作会引起死循环,导致CPU利用率接近100%(jdk1.7,1.8引入红黑树优化了),多线程put可能会导致元素丢失。所以在并发情况下不能使用HashMap。
- 效率低下的HashTable容器
JDK1.7的实现
在JDK1.7版本中,ConcurrentHashMap的数据结构是由一个Segment数组和多个HashEntry组成,如下图所示:
Segment数组的意义就是将一个大的table分割成多个小的table来进行加锁,也就是上面的提到的锁分段技术,而每一个Segment元素存储的是HashEntry数组+链表,这个和HashMap的数据存储结构一样。Segment(桶)
应用场景
当有一个大数组时需要在多个线程共享时就可以考虑是否把它给分层多个节点了,避免大锁。并可以考虑通过hash算法进行一些模块定位。 其实不止用于线程,当设计数据表的事务时(事务某种意义上也是同步机制的体现),可以把一个表看成一个需要同步的数组,如果操作的表数据太多时就可以考虑事务分离了(这也是为什么要避免大表的出现),比如把数据进行字段拆分,水平分表等.
初始化
ConcurrentHashMap的初始化是会通过位与运算来初始化Segment的大小,用ssize来表示,如下所示
int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; }
如上所示,因为ssize用位于运算来计算(ssize <<=1),所以Segment的大小取值都是以2的N次方,无关concurrencyLevel的取值,当然concurrencyLevel最大只能用16位的二进制来表示,即65536,换句话说,Segment的大小最多65536个,没有指定concurrencyLevel元素初始化,Segment的大小ssize默认为16
每一个Segment元素下的HashEntry的初始化也是按照位于运算来计算,用cap来表示,如下所示
int cap = MIN_SEGMENT_TABLE_CAPACITY; while (cap < c) cap <<= 1;
如上所示,HashEntry大小的计算也是2的N次方(cap <<=1), cap的初始值为1,所以HashEntry最小的容量为2
JDK1.8的实现
JDK1.8的实现已经摒弃了Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现,并发控制使用Synchronized和CAS来操作,整个看起来就像是优化过且线程安全的HashMap,虽然在JDK1.8中还能看到Segment的数据结构,但是已经简化了属性,只是为了兼容旧版本。
基本属性:
// 默认初始值,必须是2的幕数 private static final int DEFAULT_CAPACITY = 16; // 负载因子 private static final float LOAD_FACTOR = 0.75f; // 链表转红黑树阀值,> 8 链表转换为红黑树 static final int TREEIFY_THRESHOLD = 8; //树转链表阀值,小于等于6 ,仅在扩容tranfer时才可能树转链表 static final int UNTREEIFY_THRESHOLD = 6; static final int MIN_TREEIFY_CAPACITY = 64; private static final int MIN_TRANSFER_STRIDE = 16; private static int RESIZE_STAMP_BITS = 16; // 2^15-1,help resize的最大线程数 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; // 32-16=16,sizeCtl中记录size大小的偏移量 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; // forwarding nodes的hash值 static final int MOVED = -1; // 树根节点的hash值 static final int TREEBIN = -2; // ReservationNode的hash值 static final int RESERVED = -3; // 可用处理器数量 static final int NCPU = Runtime.getRuntime().availableProcessors(); //存放node的数组 第一次插入数据的时候初始化,大小是2的幂次方 transient volatile Node<K,V>[] table; /*控制标识符,用来控制table的初始化和扩容的操作,不同的值有不同的含义 *当为负数时:-1代表正在初始化,-N代表有N-1个线程正在 进行扩容 *当为0时:代表当时的table还没有被初始化 *当为正数时:表示初始化或者下一次进行扩容的大小 ,类似于扩容阈值。它的值始终是当前ConcurrentHashMap容量的0.75倍,这与loadfactor是对应的。实际容量>=sizeCtl,则扩容。 private transient volatile int sizeCtl;
put操作
public V put(K key, V value) { return putVal(key, value, false); } /** Implementation for put and putIfAbsent */ final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException(); int hash = spread(key.hashCode()); //两次hash,减少hash冲突,可以均匀分布 int binCount = 0; for (Node<K,V>[] tab = table;;) { //对这个table进行迭代 Node<K,V> f; int n, i, fh; //这里就是上面构造方法没有进行初始化,在这里进行判断,为null就调用initTable进行初始化,属于懒汉模式初始化 if (tab == null || (n = tab.length) == 0) tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//如果i位置没有数据,就直接无锁插入 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } else if ((fh = f.hash) == MOVED)//如果在进行扩容,则先进行扩容操作 tab = helpTransfer(tab, f); else { V oldVal = null; //如果以上条件都不满足,那就要进行加锁操作,也就是存在hash冲突,锁住链表或者红黑树的头结点 synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { //表示该节点是链表结构 binCount = 1; for (Node<K,V> e = f;; ++binCount) { K ek; //这里涉及到相同的key进行put就会覆盖原先的value if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node<K,V> pred = e; if ((e = e.next) == null) { //插入链表尾部 pred.next = new Node<K,V>(hash, key, value, null); break; } } } else if (f instanceof TreeBin) {//红黑树结构 Node<K,V> p; binCount = 2; //红黑树结构旋转插入 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) { //如果链表的长度大于8时就会进行红黑树的转换 if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } addCount(1L, binCount);//统计size,并且检查是否需要扩容 return null; }
这个put的过程很清晰,对当前的table进行无条件自循环直到put成功,可以分成以下六步流程来概述。
- 如果没有初始化就先调用initTable()方法来进行初始化过程
- 如果没有hash冲突就直接CAS插入
- 如果还在进行扩容操作就先进行扩容
- 如果存在hash冲突,就加锁来保证线程安全,这里有两种情况,一种是链表形式就直接遍历到尾端插入,一种是红黑树就按照红黑树结构插入,
- 最后一个如果该链表的数量大于阈值8,就要先转换成黑红树的结构,break再一次进入循环
- 如果添加成功就调用addCount()方法统计size,并且检查是否需要扩容
现在我们来对每一步的细节进行源码分析,在第一步中,符合条件会进行初始化操作,我们来看看initTable()方法
private final Node<K,V>[] initTable() { Node<K,V>[] tab; int sc; while ((tab = table) == null || tab.length == 0) {//空的table才能进入初始化操作 if ((sc = sizeCtl) < 0) //sizeCtl<0表示其他线程已经在初始化了或者扩容了,挂起当前线程 Thread.yield(); // lost initialization race; just spin else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {//CAS操作SIZECTL为-1,表示初始化状态 try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];//初始化 table = tab = nt; sc = n - (n >>> 2);//记录下次扩容的大小 } } finally { sizeCtl = sc; } break; } } return tab; }
在第二步中没有hash冲突就直接调用Unsafe的方法CAS插入该元素,进入第三步如果容器正在扩容,则会调用helpTransfer()方法帮助扩容,现在我们跟进helpTransfer()方法看看
/** *帮助从旧的table的元素复制到新的table中 */ final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) { Node<K,V>[] nextTab; int sc; if (tab != null && (f instanceof ForwardingNode) && (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) { //新的table nextTba已经存在前提下才能帮助扩容 int rs = resizeStamp(tab.length); while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { transfer(tab, nextTab);//调用扩容方法 break; } } return nextTab; } return table; }
其实helpTransfer()方法的目的就是调用多个工作线程一起帮助进行扩容,这样的效率就会更高,而不是只有检查到要扩容的那个线程进行扩容操作,其他线程就要等待扩容操作完成才能工作。
既然这里涉及到扩容的操作,我们也一起来看看扩容方法transfer()
扩容原理
该方法的执行逻辑如下:
- 计算每个线程可以处理的桶区间。默认 16.
- 初始化临时变量 nextTable,扩容 2 倍。
- 死循环,计算下标。完成总体判断。
如果桶内有数据,同步转移数据。通常会像链表拆成 2 份。
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) { int n = tab.length, stride; // 将 length / 8 然后除以 CPU核心数。如果得到的结果小于 16,那么就使用 16。 // 这里的目的是让每个 CPU 处理的桶一样多,避免出现转移任务不均匀的现象,如果桶较少的话,默认一个 CPU(一个线程)处理 16 个桶 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) stride = MIN_TRANSFER_STRIDE; // stride 一步的距离 // 新的 table 尚未初始化 if (nextTab == null) { // initiating try { //构建一个nextTable对象,其容量为原来容量的两倍 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1]; nextTab = nt; } catch (Throwable ex) { // try to cope with OOME // 扩容失败, sizeCtl 使用 int 最大值。 sizeCtl = Integer.MAX_VALUE; return; } // 更新成员变量 nextTable = nextTab; // 更新转移下标,就是 老的 tab 的 length transferIndex = n; } // 新 tab 的 length int nextn = nextTab.length; // 创建一个 fwd 节点,用于占位。当别的线程发现这个槽位中是 fwd 类型的节点,则跳过这个节点。 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab); // 当advance == true时,表明该节点已经处理过了 boolean advance = true; // 完成状态,如果是 true,就结束此方法。 boolean finishing = false; // to ensure sweep before committing nextTab // 死循环,i 表示下标,bound 表示当前线程可以处理的当前桶区间最小下标 for (int i = 0, bound = 0;;) { Node<K,V> f; int fh; // 控制 --i ,遍历原hash表中的节点 while (advance) { int nextIndex, nextBound; // 对 i 减一,判断是否大于等于 bound (正常情况下,如果大于 bound 不成立,说明该线程上次领取的任务已经完成了。那么,需要在下面继续领取任务) // 如果对 i 减一大于等于 bound(还需要继续做任务),或者完成了,修改推进状态为 false,不能推进了。任务成功后修改推进状态为 true。 // 通常,第一次进入循环,i-- 这个判断会无法通过,从而走下面的 nextIndex 赋值操作(获取最新的转移下标)。其余情况都是:如果可以推进,将 i 减一,然后修改成不可推进。如果 i 对应的桶处理成功了,改成可以推进。 if (--i >= bound || finishing) advance = false; // 这里设置 false,是为了防止在没有成功处理一个桶的情况下却进行了推进 // 这里的目的是:1. 当一个线程进入时,会选取最新的转移下标。2. 当一个线程处理完自己的区间时,如果还有剩余区间的没有别的线程处理。再次获取区间。 else if ((nextIndex = transferIndex) <= 0) { // 如果小于等于0,说明没有区间了 ,i 改成 -1,推进状态变成 false,不再推进,表示,扩容结束了,当前线程可以退出了 // 这个 -1 会在下面的 if 块里判断,从而进入完成状态判断 i = -1; advance = false; } // CAS 修改 transferIndex,即 length - 区间值,留下剩余的区间值供后面的线程使用 else if (U.compareAndSwapInt (this, TRANSFERINDEX, nextIndex, nextBound = (nextIndex > stride ? nextIndex - stride : 0))) { bound = nextBound; // 这个值就是当前线程可以处理的最小当前区间最小下标 i = nextIndex - 1; // 初次对i 赋值,这个就是当前线程可以处理的当前区间的最大下标 advance = false; } } if (i < 0 || i >= n || i + n >= nextn) { int sc; // 已经完成所有节点复制了 if (finishing) { nextTable = null; table = nextTab; // table 指向nextTable sizeCtl = (n << 1) - (n >>> 1); // sizeCtl阈值为原来的1.5倍 return; // 跳出死循环, } // CAS 更扩容阈值,在这里面sizectl值减一,说明新加入一个线程参与到扩容操作 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) return; finishing = advance = true; i = n; // recheck before commit } } // 遍历的节点为null,则放入到ForwardingNode 指针节点 else if ((f = tabAt(tab, i)) == null) advance = casTabAt(tab, i, null, fwd); // f.hash == -1 表示遍历到了ForwardingNode节点,意味着该节点已经处理过了 // 这里是控制并发扩容的核心 else if ((fh = f.hash) == MOVED) advance = true; // already processed else { // 节点加锁 synchronized (f) { // 节点复制工作 if (tabAt(tab, i) == f) { Node<K,V> ln, hn; // fh >= 0 ,表示为链表节点 if (fh >= 0) { // 构造两个链表 一个是原链表 另一个是原链表的反序排列 int runBit = fh & n; Node<K,V> lastRun = f; for (Node<K,V> p = f.next; p != null; p = p.next) { int b = p.hash & n; if (b != runBit) { runBit = b; lastRun = p; } } if (runBit == 0) { ln = lastRun; hn = null; } else { hn = lastRun; ln = null; } for (Node<K,V> p = f; p != lastRun; p = p.next) { int ph = p.hash; K pk = p.key; V pv = p.val; if ((ph & n) == 0) ln = new Node<K,V>(ph, pk, pv, ln); else hn = new Node<K,V>(ph, pk, pv, hn); } // 在nextTable i 位置处插上链表 setTabAt(nextTab, i, ln); // 在nextTable i + n 位置处插上链表 setTabAt(nextTab, i + n, hn); // 在table i 位置处插上ForwardingNode 表示该节点已经处理过了 setTabAt(tab, i, fwd); // advance = true 可以执行--i动作,遍历节点 advance = true; } // 如果是TreeBin,则按照红黑树进行处理,处理逻辑与上面一致 else if (f instanceof TreeBin) { TreeBin<K,V> t = (TreeBin<K,V>)f; TreeNode<K,V> lo = null, loTail = null; TreeNode<K,V> hi = null, hiTail = null; int lc = 0, hc = 0; for (Node<K,V> e = t.first; e != null; e = e.next) { int h = e.hash; TreeNode<K,V> p = new TreeNode<K,V> (h, e.key, e.val, null, null); if ((h & n) == 0) { if ((p.prev = loTail) == null) lo = p; else loTail.next = p; loTail = p; ++lc; } else { if ((p.prev = hiTail) == null) hi = p; else hiTail.next = p; hiTail = p; ++hc; } } // 扩容后树节点个数若<=6,将树转链表 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : (hc != 0) ? new TreeBin<K,V>(lo) : t; hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : (lc != 0) ? new TreeBin<K,V>(hi) : t; setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } } } } } }
扩容过程有点复杂,这里主要涉及到多线程并发扩容,ForwardingNode的作用就是支持扩容操作,将已处理的节点和空节点置为ForwardingNode,并发处理时多个线程经过ForwardingNode就表示已经遍历了,就往后遍历,下图是多线程合作扩容的过程:
介绍完扩容过程,我们再次回到put流程,在第四步中是向链表或者红黑树里加节点,到第五步,会调用treeifyBin()方法进行链表转红黑树的过程。
private final void treeifyBin(Node<K,V>[] tab, int index) { Node<K,V> b; int n, sc; if (tab != null) { //如果整个table的数量小于64,就扩容至原来的一倍,不转红黑树了 //因为这个阈值扩容可以减少hash冲突,不必要去转红黑树 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) tryPresize(n << 1); else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { synchronized (b) { if (tabAt(tab, index) == b) { TreeNode<K,V> hd = null, tl = null; for (Node<K,V> e = b; e != null; e = e.next) { //封装成TreeNode TreeNode<K,V> p = new TreeNode<K,V>(e.hash, e.key, e.val, null, null); if ((p.prev = tl) == null) hd = p; else tl.next = p; tl = p; } //通过TreeBin对象对TreeNode转换成红黑树 setTabAt(tab, index, new TreeBin<K,V>(hd)); } } } } }
到第六步表示已经数据加入成功了,现在调用addCount()方法计算ConcurrentHashMap的size,在原来的基础上加一,现在来看看addCount()方法。
private final void addCount(long x, int check) { CounterCell[] as; long b, s; //更新baseCount,table的数量,counterCells表示元素个数的变化 if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { CounterCell a; long v; int m; boolean uncontended = true; //如果多个线程都在执行,则CAS失败,执行fullAddCount,全部加入count if (as == null || (m = as.length - 1) < 0 || (a = as[ThreadLocalRandom.getProbe() & m]) == null || !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { fullAddCount(x, uncontended); return; } if (check <= 1) return; s = sumCount(); } //check>=0表示需要进行扩容操作 if (check >= 0) { Node<K,V>[] tab, nt; int n, sc; while (s >= (long)(sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if (sc < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } //当前线程发起库哦哦让操作,nextTable=null else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); s = sumCount(); } } }
put的流程现在已经分析完了,你可以从中发现,他在并发处理中使用的是乐观锁,当有冲突的时候才进行并发处理,而且流程步骤很清晰,但是细节设计的很复杂,毕竟多线程的场景也复杂。
get操作
我们现在要回到开始的例子中,我们对个人信息进行了新增之后,我们要获取所新增的信息,使用String name = map.get(“name”)获取新增的name信息,现在我们依旧用debug的方式来分析下ConcurrentHashMap的获取方法get()
public V get(Object key) { Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek; int h = spread(key.hashCode()); //计算两次hash if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) {//读取首节点的Node元素 if ((eh = e.hash) == h) { //如果该节点就是首节点就返回 if ((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; } //hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来 //查找,查找到就返回 else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null; while ((e = e.next) != null) {//既不是首节点也不是ForwardingNode,那就往下遍历 if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }
ConcurrentHashMap的get操作的流程很简单,也很清晰,可以分为三个步骤来描述
- 计算hash值,定位到该table索引位置,如果是首节点符合就返回
- 如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回
- 以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null
size操作
public int size() { long n = sumCount(); return ((n < 0L) ? 0 : (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int)n); } final long sumCount() { CounterCell[] as = counterCells; CounterCell a; //变化的数量 long sum = baseCount; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += a.value; } } return sum; }
在JDK1.8版本中,对于size的计算,在扩容和addCount()方法就已经有处理了,JDK1.7是在调用size()方法才去计算,其实在并发集合中去计算size是没有多大的意义的,因为size是实时在变的,只能计算某一刻的大小,但是某一刻太快了,人的感知是一个时间段,所以并不是很精确。
总结与思考
其实可以看出JDK1.8版本的ConcurrentHashMap的数据结构已经接近HashMap,相对而言,ConcurrentHashMap只是增加了同步的操作来控制并发,从JDK1.7版本的ReentrantLock+Segment+HashEntry,到JDK1.8版本中synchronized+CAS+HashEntry+红黑树,相对而言,总结如下思考:
- JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)
- JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也增加了
- JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档
- JDK1.8为什么使用内置锁synchronized来代替重入锁ReentrantLock,我觉得有以下几点:
- 因为粒度降低了,在相对而言的低粒度加锁方式,synchronized并不比ReentrantLock差,在粗粒度加锁中ReentrantLock可能通过Condition来控制各个低粒度的边界,更加的灵活,而在低粒度中,Condition的优势就没有了
- JVM的开发团队从来都没有放弃synchronized,而且基于JVM的synchronized优化空间更大,使用内嵌的关键字比使用API更加自然
- 减少内存开销 :在大量的数据操作下,对于JVM的内存压力,基于API的ReentrantLock会开销更多的内存,虽然不是瓶颈,但是也是一个选择依据
以上就是ConcurrentHashMap线程安全及实现原理实例解析的详细内容,更多关于ConcurrentHashMap线程安全的资料请关注脚本之家其它相关文章!