聊聊Spring Boot如何配置多个Kafka数据源
作者:Mr Tang
这篇文章主要介绍了Spring Boot配置多个Kafka数据源的相关知识,包括生产者、消费者配置,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
一、配置文件
application.properties配置文件如下
#kafka多数据源配置 #kafka数据源一,日志审计推送 spring.kafka.one.bootstrap-servers=172.19.12.109:32182 spring.kafka.one.producer.retries=0 spring.kafka.one.producer.properties.max.block.ms=5000 #kafka数据源二,动环数据消费 spring.kafka.two.bootstrap-servers=172.19.12.109:32182 spring.kafka.two.producer.retries=0 spring.kafka.two.producer.properties.max.block.ms=5000 spring.kafka.two.consumer.group-id=bw-convert-data spring.kafka.two.consumer.enable-auto-commit=true
二、pom依赖
<dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> </dependency>
三、生产者、消费者配置
1.第一个kakfa
package com.gstanzer.convert.config; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.common.serialization.StringSerializer; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.annotation.EnableKafka; import org.springframework.kafka.core.*; import java.util.HashMap; import java.util.Map; @EnableKafka @Configuration public class KafkaOneConfig { @Value("${spring.kafka.one.bootstrap-servers}") private String bootstrapServers; @Value("${spring.kafka.one.producer.retries}") private String retries; @Value("${spring.kafka.one.producer.properties.max.block.ms}") private String maxBlockMs; @Bean public KafkaTemplate<String, String> kafkaOneTemplate() { return new KafkaTemplate<>(producerFactory()); } private ProducerFactory<String, String> producerFactory() { return new DefaultKafkaProducerFactory<>(producerConfigs()); } private Map<String, Object> producerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers); props.put(ProducerConfig.RETRIES_CONFIG, retries); props.put(ProducerConfig.MAX_BLOCK_MS_CONFIG, maxBlockMs); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class); return props; } }
2.第二个kakfa
package com.gstanzer.convert.config; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.common.serialization.StringDeserializer; import org.apache.kafka.common.serialization.StringSerializer; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.annotation.EnableKafka; import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory; import org.springframework.kafka.config.KafkaListenerContainerFactory; import org.springframework.kafka.core.*; import org.springframework.kafka.listener.ConcurrentMessageListenerContainer; import java.util.HashMap; import java.util.Map; @Configuration @EnableKafka public class KafkaTwoConfig { @Value("${spring.kafka.two.bootstrap-servers}") private String bootstrapServers; @Value("${spring.kafka.two.producer.retries}") private String retries; @Value("${spring.kafka.two.producer.properties.max.block.ms}") private String maxBlockMs; @Value("${spring.kafka.two.consumer.group-id}") private String groupId; @Value("${spring.kafka.two.consumer.enable-auto-commit}") private boolean enableAutoCommit; @Bean public KafkaTemplate<String, String> kafkaTwoTemplate() { return new KafkaTemplate<>(producerFactory()); } @Bean KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaTwoContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setConcurrency(3); factory.getContainerProperties().setPollTimeout(3000); return factory; } private ProducerFactory<String, String> producerFactory() { return new DefaultKafkaProducerFactory<>(producerConfigs()); } public ConsumerFactory<Integer, String> consumerFactory() { return new DefaultKafkaConsumerFactory<>(consumerConfigs()); } private Map<String, Object> producerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers); props.put(ProducerConfig.RETRIES_CONFIG, retries); props.put(ProducerConfig.MAX_BLOCK_MS_CONFIG, maxBlockMs); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class); return props; } private Map<String, Object> consumerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers); props.put(ConsumerConfig.GROUP_ID_CONFIG, groupId); props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit); props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); return props; } }
四.生产者
@Controller public class TestController { @Autowired private KafkaTemplate kafkaOneTemplate; @Autowired private KafkaTemplate kafkaTwoTemplate; @RequestMapping("/send") @ResponseBody public String send() { final String TOPIC = "TOPIC_1"; kafkaOneTemplate.send(TOPIC, "kafka one"); kafkaTwoTemplate.send(TOPIC, "kafka two"); return "success"; } }
五.消费者
@Component public class KafkaConsumer { private static final Logger LOGGER = LoggerFactory.getLogger(KafkaConsumer.class); final String TOPIC = "TOPIC_1"; // containerFactory 的值要与配置中 KafkaListenerContainerFactory 的 Bean 名相同 @KafkaListener(topics = {TOPIC}, containerFactory = "kafkaOneContainerFactory") public void listenerOne(ConsumerRecord<?, ?> record) { LOGGER.info(" kafka one 接收到消息:{}", record.value()); } @KafkaListener(topics = {TOPIC}, containerFactory = "kafkaTwoContainerFactory") public void listenerTwo(ConsumerRecord<?, ?> record) { LOGGER.info(" kafka two 接收到消息:{}", record.value()); } }
备注:
生产者消费者代码参考链接,开发同学需要以实际情况按要求自己变更下代码即可:
Spring Boot 集成多个 Kafka_springboot集成多个kafka
到此这篇关于Spring Boot配置多个Kafka数据源的文章就介绍到这了,更多相关Spring Boot配置Kafka数据源内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!