Java实现视频初步压缩和解压的代码示例
作者:Ha_Ha_Wu
从摄像头读取每一帧的图片,用一些简单的方法将多张图片信息压缩到一份文件中(自定义的视频文件),自定义解码器读取视频文件,并将每帧图片展示成视频,本文主要介绍了Java实现视频初步压缩和解压,需要的朋友可以参考下
第一步:按照某些算法帧内压缩
常见的视频压缩算法(H264,H265,MP4)过程很复杂,实现的压缩比率也很恐怖(H265可以做到0.5%的压缩率,也就是就算每帧图片加起来有2个GB,合并起来的视频也就10MB),其中压缩算法流程大致如下,我的程序没有细究算法,简单实现了25%的压缩率。
帧内压缩:
- 帧分割: 将原本RGB格式的图像用YUV表示,用YUV是将原本的像素信息转化成亮度和色度信息,由于人眼对色度的变化并不敏感,所以YUV可以在多个像素点之上采用同一数据以实现数据压缩。具体的做法是:将原本图片分成22 / 44 / 88 / 1616的宏块,每个宏块(4*4为例)内按照YUV格式数据采集——记录每个像素格的亮度Y,记录每横向两个像素格的色度U,记录每个宏块左上角像素各的色度V。算法将Y,U,V分别存储,再在接收端分别取出某个宏块对应的数据,恢复成YUV,再恢复成RGB。
- 帧内预测: 邻近的宏块之间可以进行预测,算法思想是由一个宏块,通过某种预测模式,得到一个预测的模块,将实际值和预测值之间的残差进行保存。
- 离散余弦变换(DCT) 对每个块的残差执行DCT变换,算法思想是:图像数据分为细节、纹理和快速变化这类的高频信息,和像整体趋势、平均值和慢速变化这类低频信息;DCT主要保留包含了数据整体特征的低频信息。
- 量化: 由于DCT的结果中浮点数较多,量化将其截断为整数以减少数据量
- 熵编码: 熵编码用于编码多种类型的信息,像文本、图像、音频等信息根据数据的概率分布(如字符、像素、采样值)映射为可变长度的编码。经典哈夫曼树就是一种实现。在此就是将像素值/YUV值根据其概率分布设置不同编码。
帧间压缩:
- 帧间预测: 由于很多帧之间存在冗余,算法首先选择一个参考帧,然后计算参考帧和当前帧之间的运动矢量,由此去除冗余信息
- 运动补偿...
- 残差计算...
- ...
我的代码:
- 主要Controller:
@GetMapping("/compressedVideos") public void getCompressedBytes() throws IOException { //录制5秒的视频,存在List中 webcam.open(); long startTime = System.currentTimeMillis(); List<BufferedImage> bufferedImages = new ArrayList<>(); while (System.currentTimeMillis() - startTime < 5000) { BufferedImage image = webcam.getImage(); bufferedImages.add(image); } System.out.println("录制结束"); webcam.close(); //调用压缩方法,将结果写入文件中 byte[] bytes = outerCompressionUtils.photosToCompressedBytes(bufferedImages); File file = new File("压缩中的压缩.dat"); FileOutputStream fos = new FileOutputStream(file); fos.write(bytes); fos.close(); System.out.println("持久化结束"); }
压缩:
- 工具方法:将rgb转化成YUV
public static int[] rgb2YUV(int rgb) { int[] rgb1 = photoOps.RGBToInts(rgb); int red = rgb1[0]; int green = rgb1[1]; int blue = rgb1[2]; int Y = (int) (0.299 * red + 0.587 * green + 0.114 * blue -128); //-128 到 127 int U = (int) (-0.1684 * red - 0.3316 * green + 0.5 * blue);//-128 到 127 int V = (int) (0.5 * red - 0.4187 * green - 0.083 * blue); //-128 到 127 return new int[]{Y, U, V}; }
- 工具方法:一张图片化成YUV
public static byte[] compressToOneChannel(BufferedImage bufferedImage) { byte[] Ys = new byte[bufferedImage.getWidth() * bufferedImage.getHeight()]; byte[] Us = new byte[bufferedImage.getHeight() * (bufferedImage.getWidth() / 2)]; byte[] Vs = new byte[(bufferedImage.getWidth() / 2) * (bufferedImage.getHeight() / 2)]; int targetYs = 0; int targetUs = 0; int targetVs = 0; /* 这里就是遍历2*2的宏块,将其中对应YUV分别写到YUV的数组中 需要注意的是我犯的一个错误:没有注意到Y和U的遍历过程,导致在解码的时候图片异常 */ for (int i = 0; i < bufferedImage.getHeight(); i += 2) { for (int j = 0; j < bufferedImage.getWidth(); j += 2) { for (int k = 0; k < 2; k++) { for (int l = 0; l < 2; l++) { int[] ints = rgb2YUV(bufferedImage.getRGB(j + l, i + k)); int Y = ints[0]; Ys[targetYs] = (byte) (Y); targetYs++; } int[] ints = rgb2YUV(bufferedImage.getRGB(j, i + k)); int U = ints[1]; Us[targetUs] = (byte) (U); targetUs++; } int[] ints = rgb2YUV(bufferedImage.getRGB(j, i)); int V = ints[2]; Vs[targetVs] = (byte) (V); targetVs++; } } int length1 = Ys.length; //大小估计 : 图片3000*2000 = 6000000 不会超int范围 int length2 = Us.length; int length3 = Vs.length; byte[] targetBytes = new byte[4 * 5 + length1 + length2 + length3]; int targetIndex = 0; //这里是将byte[]开头填充一些用于解码的信息,因为Ys,Us,Vs都是一起传的,需要在包开头标明每个数组长度 //Y区的长度 byte[] bytes1 = intToByte(length1); for (byte b : bytes1) { targetBytes[targetIndex] = b; targetIndex++; } //U区长度 byte[] bytes2 = intToByte(length2); for (byte b : bytes2) { targetBytes[targetIndex] = b; targetIndex++; } //V区长度 byte[] bytes3 = intToByte(length3); for (byte b : bytes3) { targetBytes[targetIndex] = b; targetIndex++; } //图片的高 byte[] bytes4 = intToByte(bufferedImage.getHeight()); for (byte b : bytes4) { targetBytes[targetIndex] = b; targetIndex++; } //图片的宽 byte[] bytes5 = intToByte(bufferedImage.getWidth()); for (byte b : bytes5) { targetBytes[targetIndex] = b; targetIndex++; } //传递真实数据 for (byte y : Ys) { targetBytes[targetIndex] = y; targetIndex++; } for (byte u : Us) { targetBytes[targetIndex] = u; targetIndex++; } for (byte v : Vs) { targetBytes[targetIndex] = v; targetIndex++; } return targetBytes; }
- 工具方法:多张图片化成YUV并压缩
public static byte[] photosToCompressedBytes(List<BufferedImage> bufferedImages) throws IOException { //数据流中未必要有各种辅助信息,比如各类字段长度,在外规定好算了 //这里每一帧的长度就是:20 + 640 * 480 * 1.75 ByteArrayOutputStream baos = new ByteArrayOutputStream(); //java提供的压缩工具,此输出流将输出的东西压缩输出 //传入的Deflater对象用于控制压缩算法 DeflaterOutputStream dos = new DeflaterOutputStream(baos,new Deflater()); //帧信息添加到压缩流 for (BufferedImage bufferedImage: bufferedImages ) { byte[] bytes = innerCompressionUtils.compressToOneChannel(bufferedImage); System.out.println("一帧的长度为:"+bytes.length); dos.write(bytes); } byte[] compressedData = baos.toByteArray(); return compressedData; }
- 尝试用哈夫曼编码优化
class HuffmanNode implements Comparable<HuffmanNode>{ byte value; int frequency; HuffmanNode left; HuffmanNode right; public HuffmanNode(byte value,int frequency){ this.value = value; this.frequency = frequency; } @Override public int compareTo(@NotNull HuffmanNode o) { return this.frequency - o.frequency; } }
public class Huffman { public static Map<Byte,String> encodingTable; public static String huffmanEncoding(byte[] originalBytes){ Map<Byte,Integer> frequencyMap = new HashMap<>(); for (byte b: originalBytes ) { frequencyMap.put(b, frequencyMap.getOrDefault(b,0)+1); } PriorityQueue<HuffmanNode> minHeap = new PriorityQueue<>(); for (Map.Entry<Byte, Integer> entry : frequencyMap.entrySet() ) { minHeap.add(new HuffmanNode(entry.getKey(),entry.getValue())); } while (minHeap.size()>1){ HuffmanNode left = minHeap.poll(); HuffmanNode right = minHeap.poll(); HuffmanNode mergeNode = new HuffmanNode((byte)0, left.frequency + right.frequency); mergeNode.left = left; mergeNode.right = right; minHeap.add(mergeNode); } encodingTable = new HashMap<>(); HuffmanNode root = minHeap.poll(); buildEncodingTable(root,"",encodingTable); StringBuilder encodingData = new StringBuilder(); for (Byte b: originalBytes ) { encodingData.append(encodingTable.get(b)); } System.out.println("原始数组长度"+originalBytes.length); System.out.println("哈夫曼后数组长度"+encodingData.length()); return encodingData.toString(); }
public static void buildEncodingTable(HuffmanNode node,String currentCode,Map<Byte,String> encodingMap) { if (node == null) { return; } if (node.left == null && node.right == null) { encodingMap.put(node.value, currentCode); } else { buildEncodingTable(node.left, currentCode + "0", encodingMap); buildEncodingTable(node.right, currentCode + "1", encodingMap); } }
但其实这里用哈夫曼并不会优化数据量,原因如下: 我传输的数据是-128到127的byte类型,这些byte来自图片的亮度和色度,调试中发现这255个数字出现的频率差不多,全部都在14万到20万之间,两个最小值加起来任然比最大值大,这就意味着这颗哈夫曼树会比较满,类似完全二叉树,于是就无法区分出现频率最高的某个字符。
另外,原本255个数将8位byte全都占满,假如有一个频率很高的元素,我们把较短的0101赋给它,那势必会导致原本以0101开头的元素用8位以上的长度进行表示,而程序中各元素出现频率相近,这就会导致如果有元素用短于8位的编码,其他长于8位编码的元素会导致数据更加庞大。
我在用huffman编码后,数据量一点都没有变,只是由长度为40647865的byte数组变成长度为325182920的字符串,其实就是×8 。怀疑是代码哪里错了...
常见的压缩算法是将DCT变换后的结果进行哈夫曼编码,DCT变换后低频信息和高频信息自然区分开,确实更适合这个熵编码方法
- 解压:
先将java zip包的压缩过程解压
public static InflaterInputStream inflaterCompressedBytes(byte[] bytes) throws IOException { //解压数据 ByteArrayInputStream bais = new ByteArrayInputStream(bytes); InflaterInputStream lis = new InflaterInputStream(bais, new Inflater()); return lis; }
- 依据压缩时自定义的格式进行对byte数组解析
public static BufferedImage getBfi(byte[] originalBytes) { //分别先把开头表示各个区长度以及图片宽高的参数取出来 byte one = originalBytes[0]; byte two = originalBytes[1]; byte three = originalBytes[2]; byte four = originalBytes[3]; int Y = ((one & 0xff) << 24) | ((two & 0xff) << 16) | ((three & 0xff) << 8) | (four & 0xff); byte one2 = originalBytes[4]; byte two2 = originalBytes[5]; byte three2 = originalBytes[6]; byte four2 = originalBytes[7]; int U = ((one2 & 0xff) << 24) | ((two2 & 0xff) << 16) | ((three2 & 0xff) << 8) | (four2 & 0xff); byte one3 = originalBytes[8]; byte two3 = originalBytes[9]; byte three3 = originalBytes[10]; byte four3 = originalBytes[11]; int V = ((one3 & 0xff) << 24) | ((two3 & 0xff) << 16) | ((three3 & 0xff) << 8) | (four3 & 0xff); byte one4 = originalBytes[12]; byte two4 = originalBytes[13]; byte three4 = originalBytes[14]; byte four4 = originalBytes[15]; int height = ((one4 & 0xff) << 24) | ((two4 & 0xff) << 16) | ((three4 & 0xff) << 8) | (four4 & 0xff); byte one5 = originalBytes[16]; byte two5 = originalBytes[17]; byte three5 = originalBytes[18]; byte four5 = originalBytes[19]; int width = ((one5 & 0xff) << 24) | ((two5 & 0xff) << 16) | ((three5 & 0xff) << 8) | (four5 & 0xff); System.out.println("Y: " + Y); //将数据读取出来 byte[] Ys = Arrays.copyOfRange(originalBytes, 20, Y + 20); byte[] Us = Arrays.copyOfRange(originalBytes, Y + 20, Y + U + 20); byte[] Vs = Arrays.copyOfRange(originalBytes, Y + U + 20, Y + U + V + 20); BufferedImage bfi = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); int hongW = width / 2; int hongH = height / 2; //用YUV数据恢复成RGB,填充到图片的每一个像素 for (int i = 0; i < height - 1; i++) { for (int j = 0; j < width - 1; j++) { int H = i / 2; int W = j / 2; byte y = Ys[(i / 2 * 2) * width + j / 2 * 4 + (i % 2) * 2 + j % 2]; byte u = Us[H * hongW * 2 + j / 2 * 2 + i % 2]; byte v = Vs[H * hongW + W]; int r = (int) (y + 128 + 1.14075 * (v)); int g = (int) (y + 128 - 0.3455 * (u) - 0.7169 * (v)); int b = (int) (y + 128 + 1.779 * (u)); r = Math.min(255, Math.max(0, r)); g = Math.min(255, Math.max(0, g)); b = Math.min(255, Math.max(0, b)); int color = (r) << 16 | (g) << 8 | b; if (i < 1 && j < 20) { bfi.setRGB(j, i, color); } } return bfi; }
- 简单的播放器(基于Swing)
FileInputStream fileInputStream = new FileInputStream("C:\\Users\\吴松林\\IdeaProjects\\meitu2\\压缩中的压缩.dat"); ByteArrayOutputStream outputStream = new ByteArrayOutputStream(); //此输出流中写入所有信息,最后转出为byte[],类似桶子 byte[] buffer = new byte[1024]; int bytesRead; while ((bytesRead = fileInputStream.read(buffer))!=-1){ outputStream.write(buffer,0,bytesRead); } byte[] data = outputStream.toByteArray(); InflaterInputStream iutputStream1 = utils.inflaterCompressedBytes(data); //解压 BufferedInputStream bis = new BufferedInputStream(iutputStream1); List<BufferedImage> bufferedImages = new ArrayList<>(); byte[] eachImage = new byte[(int) (20+640*480*1.75)]; int testIndex = 0; int index; System.out.println("length: "+eachImage.length); try { while ((index = bis.read(eachImage)) != -1) { System.out.println("本次读取长度:" + index); testIndex++; System.out.println("test: " + testIndex); BufferedImage bfi = utils.getBfi(eachImage); bufferedImages.add(bfi); } }catch (Exception e){ System.out.println("跳过异常,省略最后一张图片"); e.printStackTrace(); } bis.close(); iutputStream1.close(); outputStream.close(); fileInputStream.close(); JFrame jFrame = new JFrame(); myPanel panel = new myPanel(); jFrame.add(panel); jFrame.setSize(new Dimension(640,480)); jFrame.setVisible(true); panel.list = bufferedImages; while (true){ panel.repaint(); } } } class myPanel extends JPanel{ int index = 0; List<BufferedImage> list; @Override public void paint(Graphics g) { g.drawImage(list.get(index), 0, 0, null); if (index < list.size() - 2) { index++; } try { Thread.sleep(34); } catch (InterruptedException e) { throw new RuntimeException(e); } } }
注意:
- zip包在使用时我遇到报:Unexpected end of ZLIB input stream,没找到很合适的解决办法,但发现这个异常是在读取到最后一张图片时才触发,于是我选择舍弃最后一张图
- 这个播放器只用Swing简单写了一个用于测试能否读取文件,很明显我的播放器只能播放我的视频,因为其解码方式和编码方式息息相关,而各种常见的编码方式里的算法又太过复杂。所以这个程序就相当于写着玩而已,和其他视频/播放器难有半点干系。
以上就是Java实现视频初步压缩和解压的代码示例的详细内容,更多关于Java视频压缩和解压的资料请关注脚本之家其它相关文章!