Maven构建Hadoop项目的实践步骤
作者:wbj0110
前言
Hadoop的MapReduce环境是一个复杂的编程环境,所以我们要尽可能地简化构建MapReduce项目的过程。Maven是一个很不错的自动化项目构建工具,通过Maven来帮助我们从复杂的环境配置中解脱出来,从而标准化开发过程。所以,写MapReduce之前,让我们先花点时间把刀磨快!!当然,除了Maven还有其他的选择Gradle(推荐), Ivy….
后面将会有介绍几篇MapReduce开发的文章,都要依赖于本文中Maven的构建的MapReduce环境。
1. Maven介绍
Apache Maven,是一个Java的项目管理及自动构建工具,由Apache软件基金会所提供。基于项目对象模型(缩写:POM)概念,Maven利用一个中央信息片断能管理一个项目的构建、报告和文档等步骤。曾是Jakarta项目的子项目,现为独立Apache项目。
maven的开发者在他们开发网站上指出,maven的目标是要使得项目的构建更加容易,它把编译、打包、测试、发布等开发过程中的不同环节有机的串联了起来,并产生一致的、高质量的项目信息,使得项目成员能够及时地得到反馈。maven有效地支持了测试优先、持续集成,体现了鼓励沟通,及时反馈的软件开发理念。如果说Ant的复用是建立在”拷贝–粘贴”的基础上的,那么Maven通过插件的机制实现了项目构建逻辑的真正复用。
2. Maven安装(win)
下载Maven:http://maven.apache.org/download.cgi
下载最新的xxx-bin.zip文件,在win上解压到 D:\toolkit\maven3
并把maven/bin目录设置在环境变量PATH:
然后,打开命令行输入mvn,我们会看到mvn命令的运行效果
~ C:\Users\Administrator>mvn [INFO] Scanning for projects... [INFO] ------------------------------------------------------------------------ [INFO] BUILD FAILURE [INFO] ------------------------------------------------------------------------ [INFO] Total time: 0.086s [INFO] Finished at: Mon Sep 30 18:26:58 CST 2013 [INFO] Final Memory: 2M/179M [INFO] ------------------------------------------------------------------------ [ERROR] No goals have been specified for this build. You must specify a valid lifecycle phase or a goal in the format : or :[:]:. Available lifecycle phases are: validate, initialize, generate-sources, process-sources, generate-resources, process-resources, compile, process-class es, generate-test-sources, process-test-sources, generate-test-resources, process-test-resources, test-compile, process-test-classes, test, prepare-package, package, pre-integration-test, integration-test, post-integration-test, verify, install, deploy, pre-clean, clean, post-clean, pre-site, site, post-site, site-deploy. -> [Help 1] [ERROR] [ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch. [ERROR] Re-run Maven using the -X switch to enable full debug logging. [ERROR] [ERROR] For more information about the errors and possible solutions, please read the following articles: [ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/NoGoalSpecifiedException
安装Eclipse的Maven插件:Maven Integration for Eclipse
Maven的Eclipse插件配置
3. Hadoop开发环境介绍
如上图所示,我们可以选择在win中开发,也可以在linux中开发,本地启动Hadoop或者远程调用Hadoop,标配的工具都是Maven和Eclipse。
Hadoop集群系统环境:
- Linux: Ubuntu 12.04.2 LTS 64bit Server
- Java: 1.6.0_29
- Hadoop: hadoop-1.0.3,单节点,IP:192.168.1.210
4. 用Maven构建Hadoop环境
1. 用Maven创建一个标准化的Java项目
2. 导入项目到eclipse
3. 增加hadoop依赖,修改pom.xml
4. 下载依赖
5. 从Hadoop集群环境下载hadoop配置文件
6. 配置本地host
1). 用Maven创建一个标准化的Java项目
~ D:\workspace\java>mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes -DgroupId=org.conan.myhadoop.mr -DartifactId=myHadoop -DpackageName=org.conan.myhadoop.mr -Dversion=1.0-SNAPSHOT -DinteractiveMode=false [INFO] Scanning for projects... [INFO] [INFO] ------------------------------------------------------------------------ [INFO] Building Maven Stub Project (No POM) 1 [INFO] ------------------------------------------------------------------------ [INFO] [INFO] >>> maven-archetype-plugin:2.2:generate (default-cli) @ standalone-pom >>> [INFO] [INFO] <<< maven-archetype-plugin:2.2:generate (default-cli) @ standalone-pom <<< [INFO] [INFO] --- maven-archetype-plugin:2.2:generate (default-cli) @ standalone-pom --- [INFO] Generating project in Batch mode [INFO] No archetype defined. Using maven-archetype-quickstart (org.apache.maven.archetypes:maven-archetype-quickstart:1. 0) Downloading: http://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-archetype-quickstart/1.0/maven-archet ype-quickstart-1.0.jar Downloaded: http://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-archetype-quickstart/1.0/maven-archety pe-quickstart-1.0.jar (5 KB at 4.3 KB/sec) Downloading: http://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-archetype-quickstart/1.0/maven-archet ype-quickstart-1.0.pom Downloaded: http://repo.maven.apache.org/maven2/org/apache/maven/archetypes/maven-archetype-quickstart/1.0/maven-archety pe-quickstart-1.0.pom (703 B at 1.6 KB/sec) [INFO] ---------------------------------------------------------------------------- [INFO] Using following parameters for creating project from Old (1.x) Archetype: maven-archetype-quickstart:1.0 [INFO] ---------------------------------------------------------------------------- [INFO] Parameter: groupId, Value: org.conan.myhadoop.mr [INFO] Parameter: packageName, Value: org.conan.myhadoop.mr [INFO] Parameter: package, Value: org.conan.myhadoop.mr [INFO] Parameter: artifactId, Value: myHadoop [INFO] Parameter: basedir, Value: D:\workspace\java [INFO] Parameter: version, Value: 1.0-SNAPSHOT [INFO] project created from Old (1.x) Archetype in dir: D:\workspace\java\myHadoop [INFO] ------------------------------------------------------------------------ [INFO] BUILD SUCCESS [INFO] ------------------------------------------------------------------------ [INFO] Total time: 8.896s [INFO] Finished at: Sun Sep 29 20:57:07 CST 2013 [INFO] Final Memory: 9M/179M [INFO] ------------------------------------------------------------------------
进入项目,执行mvn命令
~ D:\workspace\java>cd myHadoop ~ D:\workspace\java\myHadoop>mvn clean install [INFO] [INFO] --- maven-jar-plugin:2.3.2:jar (default-jar) @ myHadoop --- [INFO] Building jar: D:\workspace\java\myHadoop\target\myHadoop-1.0-SNAPSHOT.jar [INFO] [INFO] --- maven-install-plugin:2.3.1:install (default-install) @ myHadoop --- [INFO] Installing D:\workspace\java\myHadoop\target\myHadoop-1.0-SNAPSHOT.jar to C:\Users\Administrator\.m2\repository\o rg\conan\myhadoop\mr\myHadoop\1.0-SNAPSHOT\myHadoop-1.0-SNAPSHOT.jar [INFO] Installing D:\workspace\java\myHadoop\pom.xml to C:\Users\Administrator\.m2\repository\org\conan\myhadoop\mr\myHa doop\1.0-SNAPSHOT\myHadoop-1.0-SNAPSHOT.pom [INFO] ------------------------------------------------------------------------ [INFO] BUILD SUCCESS [INFO] ------------------------------------------------------------------------ [INFO] Total time: 4.348s [INFO] Finished at: Sun Sep 29 20:58:43 CST 2013 [INFO] Final Memory: 11M/179M [INFO] ------------------------------------------------------------------------ -----------------------------------
2). 导入项目到eclipse
我们创建好了一个基本的maven项目,然后导入到eclipse中。 这里我们最好已安装好了Maven的插件。
3). 增加hadoop依赖
这里我使用hadoop-1.0.3版本,修改文件:pom.xml
~ vi pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.conan.myhadoop.mr</groupId> <artifactId>myHadoop</artifactId> <packaging>jar</packaging> <version>1.0-SNAPSHOT</version> <name>myHadoop</name> <url>http://maven.apache.org</url> <dependencies> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-core</artifactId> <version>1.0.3</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.4</version> <scope>test</scope> </dependency> </dependencies> </project>
4). 下载依赖
下载依赖:
~ mvn clean install
在eclipse中刷新项目:
项目的依赖程序,被自动加载的库路径下面。
5). 从Hadoop集群环境下载hadoop配置文件
- core-site.xml
- hdfs-site.xml
- mapred-site.xml
查看core-site.xml
<?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl" rel="external nofollow" rel="external nofollow" rel="external nofollow" ?> <configuration> <property> <name>fs.default.name</name> <value>hdfs://master:9000</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/home/conan/hadoop/tmp</value> </property> <property> <name>io.sort.mb</name> <value>256</value> </property> </configuration>
查看hdfs-site.xml
<?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl" rel="external nofollow" rel="external nofollow" rel="external nofollow" ?> <configuration> <property> <name>dfs.data.dir</name> <value>/home/conan/hadoop/data</value> </property> <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.permissions</name> <value>false</value> </property> </configuration>
查看mapred-site.xml
<?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl" rel="external nofollow" rel="external nofollow" rel="external nofollow" ?> <configuration> <property> <name>mapred.job.tracker</name> <value>hdfs://master:9001</value> </property> </configuration>
保存在src/main/resources/hadoop目录下面
删除原自动生成的文件:App.java和AppTest.java
6).配置本地host,增加master的域名指向
~ vi c:/Windows/System32/drivers/etc/hosts 192.168.1.210 master
6. MapReduce程序开发
编写一个简单的MapReduce程序,实现wordcount功能。
新一个Java文件:WordCount.java
package org.conan.myhadoop.mr; import java.io.IOException; import java.util.Iterator; import java.util.StringTokenizer; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.TextInputFormat; import org.apache.hadoop.mapred.TextOutputFormat; public class WordCount { public static class WordCountMapper extends MapReduceBase implements Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); @Override public void map(Object key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); output.collect(word, one); } } } public static class WordCountReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); @Override public void reduce(Text key, Iterator values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } result.set(sum); output.collect(key, result); } } public static void main(String[] args) throws Exception { String input = "hdfs://192.168.1.210:9000/user/hdfs/o_t_account"; String output = "hdfs://192.168.1.210:9000/user/hdfs/o_t_account/result"; JobConf conf = new JobConf(WordCount.class); conf.setJobName("WordCount"); conf.addResource("classpath:/hadoop/core-site.xml"); conf.addResource("classpath:/hadoop/hdfs-site.xml"); conf.addResource("classpath:/hadoop/mapred-site.xml"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(WordCountMapper.class); conf.setCombinerClass(WordCountReducer.class); conf.setReducerClass(WordCountReducer.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(input)); FileOutputFormat.setOutputPath(conf, new Path(output)); JobClient.runJob(conf); System.exit(0); } }
启动Java APP.
控制台错误
2013-9-30 19:25:02 org.apache.hadoop.util.NativeCodeLoader
警告: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2013-9-30 19:25:02 org.apache.hadoop.security.UserGroupInformation doAs
严重: PriviledgedActionException as:Administrator cause:java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Administrator\mapred\staging\Administrator1702422322\.staging to 0700
Exception in thread "main" java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Administrator\mapred\staging\Administrator1702422322\.staging to 0700
at org.apache.hadoop.fs.FileUtil.checkReturnValue(FileUtil.java:689)
at org.apache.hadoop.fs.FileUtil.setPermission(FileUtil.java:662)
at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:509)
at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:344)
at org.apache.hadoop.fs.FilterFileSystem.mkdirs(FilterFileSystem.java:189)
at org.apache.hadoop.mapreduce.JobSubmissionFiles.getStagingDir(JobSubmissionFiles.java:116)
at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:856)
at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:850)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1121)
at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:850)
at org.apache.hadoop.mapred.JobClient.submitJob(JobClient.java:824)
at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:1261)
at org.conan.myhadoop.mr.WordCount.main(WordCount.java:78)
这个错误是win中开发特有的错误,文件权限问题,在Linux下可以正常运行。
解决方法是,修改/hadoop-1.0.3/src/core/org/apache/hadoop/fs/FileUtil.java文件
688-692行注释,然后重新编译源代码,重新打一个hadoop.jar的包。
685 private static void checkReturnValue(boolean rv, File p, 686 FsPermission permission 687 ) throws IOException { 688 /*if (!rv) { 689 throw new IOException("Failed to set permissions of path: " + p + 690 " to " + 691 String.format("%04o", permission.toShort())); 692 }*/ 693 }
我这里自己打了一个hadoop-core-1.0.3.jar包,放到了lib下面。
我们还要替换maven中的hadoop类库。
~ cp lib/hadoop-core-1.0.3.jar C:\Users\Administrator\.m2\repository\org\apache\hadoop\hadoop-core\1.0.3\hadoop-core-1.0.3.jar
再次启动Java APP,控制台输出:
2013-9-30 19:50:49 org.apache.hadoop.util.NativeCodeLoader
警告: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2013-9-30 19:50:49 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
2013-9-30 19:50:49 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
警告: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
2013-9-30 19:50:49 org.apache.hadoop.io.compress.snappy.LoadSnappy
警告: Snappy native library not loaded
2013-9-30 19:50:49 org.apache.hadoop.mapred.FileInputFormat listStatus
信息: Total input paths to process : 4
2013-9-30 19:50:50 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: Running job: job_local_0001
2013-9-30 19:50:50 org.apache.hadoop.mapred.Task initialize
信息: Using ResourceCalculatorPlugin : null
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask runOldMapper
信息: numReduceTasks: 1
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: io.sort.mb = 100
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: data buffer = 79691776/99614720
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: record buffer = 262144/327680
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
信息: Starting flush of map output
2013-9-30 19:50:50 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
信息: Finished spill 0
2013-9-30 19:50:50 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
2013-9-30 19:50:51 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: map 0% reduce 0%
2013-9-30 19:50:53 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/o_t_account/part-m-00003:0+119
2013-9-30 19:50:53 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_m_000000_0' done.
2013-9-30 19:50:53 org.apache.hadoop.mapred.Task initialize
信息: Using ResourceCalculatorPlugin : null
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask runOldMapper
信息: numReduceTasks: 1
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: io.sort.mb = 100
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: data buffer = 79691776/99614720
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: record buffer = 262144/327680
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
信息: Starting flush of map output
2013-9-30 19:50:53 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
信息: Finished spill 0
2013-9-30 19:50:53 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
2013-9-30 19:50:54 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: map 100% reduce 0%
2013-9-30 19:50:56 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/o_t_account/part-m-00000:0+113
2013-9-30 19:50:56 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_m_000001_0' done.
2013-9-30 19:50:56 org.apache.hadoop.mapred.Task initialize
信息: Using ResourceCalculatorPlugin : null
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask runOldMapper
信息: numReduceTasks: 1
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: io.sort.mb = 100
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: data buffer = 79691776/99614720
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: record buffer = 262144/327680
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
信息: Starting flush of map output
2013-9-30 19:50:56 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
信息: Finished spill 0
2013-9-30 19:50:56 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_m_000002_0 is done. And is in the process of commiting
2013-9-30 19:50:59 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/o_t_account/part-m-00001:0+110
2013-9-30 19:50:59 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/o_t_account/part-m-00001:0+110
2013-9-30 19:50:59 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_m_000002_0' done.
2013-9-30 19:50:59 org.apache.hadoop.mapred.Task initialize
信息: Using ResourceCalculatorPlugin : null
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask runOldMapper
信息: numReduceTasks: 1
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: io.sort.mb = 100
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: data buffer = 79691776/99614720
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask$MapOutputBuffer
信息: record buffer = 262144/327680
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
信息: Starting flush of map output
2013-9-30 19:50:59 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
信息: Finished spill 0
2013-9-30 19:50:59 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_m_000003_0 is done. And is in the process of commiting
2013-9-30 19:51:02 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: hdfs://192.168.1.210:9000/user/hdfs/o_t_account/part-m-00002:0+79
2013-9-30 19:51:02 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_m_000003_0' done.
2013-9-30 19:51:02 org.apache.hadoop.mapred.Task initialize
信息: Using ResourceCalculatorPlugin : null
2013-9-30 19:51:02 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息:
2013-9-30 19:51:02 org.apache.hadoop.mapred.Merger$MergeQueue merge
信息: Merging 4 sorted segments
2013-9-30 19:51:02 org.apache.hadoop.mapred.Merger$MergeQueue merge
信息: Down to the last merge-pass, with 4 segments left of total size: 442 bytes
2013-9-30 19:51:02 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息:
2013-9-30 19:51:02 org.apache.hadoop.mapred.Task done
信息: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
2013-9-30 19:51:02 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息:
2013-9-30 19:51:02 org.apache.hadoop.mapred.Task commit
信息: Task attempt_local_0001_r_000000_0 is allowed to commit now
2013-9-30 19:51:02 org.apache.hadoop.mapred.FileOutputCommitter commitTask
信息: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/o_t_account/result
2013-9-30 19:51:05 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
信息: reduce > reduce
2013-9-30 19:51:05 org.apache.hadoop.mapred.Task sendDone
信息: Task 'attempt_local_0001_r_000000_0' done.
2013-9-30 19:51:06 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: map 100% reduce 100%
2013-9-30 19:51:06 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
信息: Job complete: job_local_0001
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Counters: 20
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: File Input Format Counters
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Bytes Read=421
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: File Output Format Counters
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Bytes Written=348
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: FileSystemCounters
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: FILE_BYTES_READ=7377
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: HDFS_BYTES_READ=1535
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: FILE_BYTES_WRITTEN=209510
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: HDFS_BYTES_WRITTEN=348
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map-Reduce Framework
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map output materialized bytes=458
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map input records=11
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Reduce shuffle bytes=0
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Spilled Records=30
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map output bytes=509
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Total committed heap usage (bytes)=1838546944
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map input bytes=421
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: SPLIT_RAW_BYTES=452
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Combine input records=22
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Reduce input records=15
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Reduce input groups=13
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Combine output records=15
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Reduce output records=13
2013-9-30 19:51:06 org.apache.hadoop.mapred.Counters log
信息: Map output records=22
成功运行了wordcount程序,通过命令我们查看输出结果
~ hadoop fs -ls hdfs://192.168.1.210:9000/user/hdfs/o_t_account/result Found 2 items -rw-r--r-- 3 Administrator supergroup 0 2013-09-30 19:51 /user/hdfs/o_t_account/result/_SUCCESS -rw-r--r-- 3 Administrator supergroup 348 2013-09-30 19:51 /user/hdfs/o_t_account/result/part-00000 ~ hadoop fs -cat hdfs://192.168.1.210:9000/user/hdfs/o_t_account/result/part-00000 1,abc@163.com,2013-04-22 1 10,ade121@sohu.com,2013-04-23 1 11,addde@sohu.com,2013-04-23 1 17:21:24.0 5 2,dedac@163.com,2013-04-22 1 20:21:39.0 6 3,qq8fed@163.com,2013-04-22 1 4,qw1@163.com,2013-04-22 1 5,af3d@163.com,2013-04-22 1 6,ab34@163.com,2013-04-22 1 7,q8d1@gmail.com,2013-04-23 1 8,conan@gmail.com,2013-04-23 1 9,adeg@sohu.com,2013-04-23 1
这样,我们就实现了在win7中的开发,通过Maven构建Hadoop依赖环境,在Eclipse中开发MapReduce的程序,然后运行JavaAPP。Hadoop应用会自动把我们的MR程序打成jar包,再上传的远程的hadoop环境中运行,返回日志在Eclipse控制台输出。
7. 模板项目上传github
https://github.com/bsspirit/maven_hadoop_template
~ git clone https://github.com/bsspirit/maven_hadoop_template.git
我们完成第一步,下面就将正式进入MapReduce开发实践。
到此这篇关于Maven构建Hadoop项目的实践步骤的文章就介绍到这了,更多相关Maven构建Hadoop内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!