Java常见的四种负载均衡算法
作者:Javatutouhouduan
前言
一般来说,我们在设计系统的时候,为了系统的高扩展性,会尽可能的创建无状态的系统,这样我们就可以采用集群的方式部署,最终很方便的根据需要动态增减服务器数量。但是,要使系统具有更好的可扩展性,除了无状态设计之外,还要考虑采用什么负载均衡算法,本文就带领大家认识以下常见的4种负载均衡算法。
什么是负载均衡
负载均衡是指多台服务器以对称的方式组成一个服务器集群。每台服务器的地位相当(但不同的服务器可能性能不同),可以独立提供服务,无需其他服务器的辅助。为了保证系统的可扩展性,需要有一种算法能够将系统负载平均分配给集群中的每台服务器。这种算法称为负载均衡算法。负责执行负载均衡算法并平均分配请求的服务器称为负载均衡器。
随机算法
随机算法非常简单,该算法的核心是通过随机函数随机获取一个服务器进行访问。假设我们现在有四台服务器,192.168.1.1~ 192.168.1.4
, 该算法用java实现大致如下:
public class RandomTest { private static final List<String> servers = Arrays.asList("192.168.1.1", "192.168.1.2", "192.168.1.3", "192.168.1.4"); public static String getServer() { Random random = new Random(); int index = random.nextInt(servers.size()); return servers.get(index); } public static void main(String[] args) { for (int i = 0; i < 10; i++) { String server = getServer(); System.out.println("select server: "+server); } } }
当样本较小时,算法可能分布不均匀,但根据概率论,样本越大,负载会越均匀,而负载均衡算法本来就是为应对高并发场景而设计的。该算法的另一个缺点是所有机器都有相同的访问概率, 如果服务器性能不同,负载将不平衡。
轮询算法
Round-Robin
轮询算法是另一种经典的负载均衡算法。请求以循环的方式分发到集群中的所有服务器。同理,对于上述四台服务器,假设客户端向集群发送10个请求,则请求分布将如下图所示:
在十个请求中,第一、第五和第九个请求将分配给192.168.1.1
,第二、第六和第十个请求将分配给192.168.1.2
,依此类推。我们可以看到round-robin
算法可以在集群中均匀的分配请求。但是,该算法具有与随机算法相同的缺点,如果服务器性能不同,负载将不平衡,因此需要加权轮询算法。
加权轮询算法
Weighted Round-Robin
加权轮询算法是在round-robin
算法的基础上根据服务器的性能分配权重。服务器能支持的请求越多,权重就越高,分配的请求也就越多。对于同样的10个请求,使用加权轮询算法的请求分布会如下图所示:
可以看到192.168.1.4
权重最大,分配的请求数最多。看一下使用Java简单实现的以下加权循环算法。
public class RoundRobinTest { public class Node{ private String ip; private Integer weight; private Integer currentWeight; public Node(String ip,Integer weight) { this.ip = ip; this.weight = weight; this.currentWeight = weight; } public String getIp() { return ip; } public void setIp(String ip) { this.ip = ip; } public Integer getWeight() { return weight; } public void setWeight(Integer weight) { this.weight = weight; } public Integer getCurrentWeight() { return currentWeight; } public void setCurrentWeight(Integer currentWeight) { this.currentWeight = currentWeight; } } List<Node> servers = Arrays.asList( new Node("192.168.1.1",1), new Node("192.168.1.2",2), new Node("192.168.1.3",3), new Node("192.168.1.4",4)); private Integer totalWeight; public RoundRobinTest() { this.totalWeight = servers.stream() .mapToInt(Node::getWeight) .reduce((a,b)->a+b).getAsInt(); } public String getServer() { Node node = servers.stream().max(Comparator.comparingInt(Node::getCurrentWeight)).get(); node.setCurrentWeight(node.getCurrentWeight()-totalWeight); servers.forEach(server->server.setCurrentWeight(server.getCurrentWeight()+server.getWeight())); return node.getIp(); } public static void main(String[] args) { RoundRobinTest roundRobinTest = new RoundRobinTest(); for (int i = 0; i < 10; i++) { String server = roundRobinTest.getServer(); System.out.println("select server: "+server); } }
该算法的核心是的动态计算currentWeight
。每个服务器被选中后,currentWeight
需要减去所有服务器的权重之和,这样可以避免权重高的服务器一直被选中。权重高的服务器有更多的分配请求,请求可以平均分配给所有服务器。
哈希算法
哈希算法,顾名思义,就是利用哈希表根据 计算出请求的路由hashcode%N。这里hashcode代表哈希值,N代表服务器数量。该算法的优点是实现起来非常简单。具体实现如下:
private static final List<String> servers = Arrays.asList("192.168.1.1", "192.168.1.2", "192.168.1.3", "192.168.1.4"); public static String getServer(String key) { int hash = key.hashCode(); int index = hash%servers.size(); return servers.get(index); } public static void main(String[] args) { for (int i = 0; i < 10; i++) { String server = getServer(String.valueOf(i)); System.out.println("select server: "+server); } }
哈希算法在很多缓存分布式存储系统中很常见,比如Memorycached
和Redis
,但是一般不会用到上面的哈希算法,而是优化后的一致性哈希算法。
补. 源地址哈希法
源地址哈希法是一种负载均衡算法,它基于请求的源IP地址来确定请求应该分配给哪个后端服务器。通过使用哈希函数将源IP地址映射到服务器列表中的一个服务器,可以实现对请求的分散和负载均衡。
使用源地址哈希法的负载均衡过程如下:
- 维护一个服务器列表,其中包含所有可用的后端服务器。
- 当收到一个新的请求时,使用哈希函数计算请求的源IP地址的哈希值。
- 将哈希值与服务器列表的大小取模,得到一个索引值。
- 将请求发送到索引值对应的服务器,并等待响应。
通过源地址哈希法,相同的源IP地址将始终映射到同一个后端服务器,从而实现了会话的保持。这对于某些应用场景(例如需要保持会话状态)非常重要。
源地址哈希法的优点是能够实现请求的一致性分配,相同的源IP地址将被分配到同一个服务器上,避免了会话中断和数据不一致的问题。然而,当服务器列表发生变化时(例如服务器上线或下线),会导致哈希结果的变化,可能会导致一些请求重新分配给其他服务器
总结
本文总结了负载均衡常见的4种算法,我们可以发现nginx
或者spring cloud
中的ribbon
都使用到了这样的算法思想,我们可以根据自己的业务场景选择合适算法。
到此这篇关于Java常见的四种负载均衡算法的文章就介绍到这了,更多相关Java 负载均衡 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!