Golang

关注公众号 jb51net

关闭
首页 > 脚本专栏 > Golang > Go singleflight

源码剖析Golang中singleflight的应用

作者:陈明勇

这篇文章主要为大家详细介绍了如何利用singleflight来避免缓存击穿,并剖析singleflight包的源码实现和工作原理,感兴趣的可以了解下

前言

前面的一篇文章 Go singleflight:防缓存击穿利器 详细介绍 singleflight 包的使用,展示如何利用它来避免缓存击穿。而本篇文章,我们来剖析 singleflight 包的源码实现和工作原理,探索单飞的奥秘。

singleflight 版本:golang.org/x/sync v0.6.0

结构体解析

Group

Groupsingleflight 包的一个核心结构体,它管理着所有的请求,确保同一时刻,对同一资源的请求只会被执行一次。该结构体的源码如下所示:

// Group represents a class of work and forms a namespace in  
// which units of work can be executed with duplicate suppression.
type Group struct {
    mu sync.Mutex       // protects m
    m  map[string]*call // lazily initialized
}

Group 结构体有两个字段:

Group 通过维护 m 字段来跟踪每个 key 的调用状态,从而实现将多个请求合并成一个请求,多个请求共享同一个结果。

call

call 结构体表示一个针对特定 key 的正在进行中或者已完成的请求,它确保所有同时对该key调用 DoDoChan 方法的 goroutine 共享同一个执行结果。该结构体的源码如下所示:

// call is an in-flight or completed singleflight.Do call
type call struct {
    wg sync.WaitGroup

    // These fields are written once before the WaitGroup is done
    // and are only read after the WaitGroup is done.
    val interface{}
    err error

    // These fields are read and written with the singleflight
    // mutex held before the WaitGroup is done, and are read but
    // not written after the WaitGroup is done.
    dups  int
    chans []chan<- Result
}

call 结构体有五个字段:

一句话概括就是:call 结构体用于跟踪 DoDoChan 方法的调用状态,包括等待其完成的 goroutine、调用的结果、发生的错误以及跟踪重复的调用次数,对于 singleflight 在共享调用结果中起到关键作用。

Result

Result 是一个封装了请求调用结果的结构体,在DoChan 方法返回结果时使用。该结构体的源码如下所示:

// Result holds the results of Do, so they can be passed
// on a channel.
type Result struct {
    Val    interface{}
    Err    error
    Shared bool
}

Result 结构体有三个字段:

panicError

panicError 用于封装从 panic 中恢复的任意值和在给定函数执行期间产生的堆栈跟踪信息。该结构体的源码如下所示:

// A panicError is an arbitrary value recovered from a panic
// with the stack trace during the execution of given function.
type panicError struct {
    value interface{}
    stack []byte
}

// Error implements error interface.
func (p *panicError) Error() string {
    return fmt.Sprintf("%v\n\n%s", p.value, p.stack)
}

func (p *panicError) Unwrap() error {
    err, ok := p.value.(error)
    if !ok {
        return nil
    }

    return err
}

func newPanicError(v interface{}) error {
    stack := debug.Stack()

    // The first line of the stack trace is of the form "goroutine N [status]:"
    // but by the time the panic reaches Do the goroutine may no longer exist
    // and its status will have changed. Trim out the misleading line.
    if line := bytes.IndexByte(stack[:], '\n'); line >= 0 {
            stack = stack[line+1:]
    }
    return &panicError{value: v, stack: stack}
}

字段

panicError 结构体有两个字段:

方法

panicError 结构体有两个方法:

初始化函数

newPanicError(v interface{}) error:这个函数用于创建一个新的 panicError 实例。它接受从 panic 中恢复的值作为参数,然后通过 debug.Stack 获取堆栈信息,并移除堆栈信息的第一行(如 goroutine 的编号和状态),因为这一行包含的信息可能会因为 panic 的恢复而变得不准确。最后,返回指向 panicError 实例的指针。

核心方法解析

Do

func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) {
    // 获取锁
    g.mu.Lock()
    // 懒初始化 map
    if g.m == nil {
        g.m = make(map[string]*call)
    }
    // 判断特定 key 的 call 是否正在进行调用
    if c, ok := g.m[key]; ok {
        // 重复调用次数加 1
        c.dups++
        // 解锁
        g.mu.Unlock()
        // 挂起,等待调用的完成
        c.wg.Wait()
        // 判断是否发生了 panic
        if e, ok := c.err.(*panicError); ok {
                // panic
                panic(e)
        } else if c.err == errGoexit { // 判断是否发生了 runtime.Goexit
                // 执行 runtime.Goexit,停止当前 goroutine 的执行,并确保所有 defer 语句的执行
                runtime.Goexit()
        }
        // 返回结果
        return c.val, c.err, true
    }
    // 创建一个新的调用
    c := new(call)
    // 等待组加 1
    c.wg.Add(1)
    // key 和 call 映射
    g.m[key] = c
    // 释放锁
    g.mu.Unlock()
    // 调用开始,执行所接受的函数 fn
    g.doCall(c, key, fn)
    // 返回结果
    return c.val, c.err, c.dups > 0
}

Do 方法的执行流程如下所示:

1、获取锁:通过 g.mu.Lock() 加锁,确保对内部的 g.m(一个 map,用于跟踪 key 的调用状态) 和 c.dups(对于该 key 的重复调用次数) 的访问是并发安全的。

2、初始化 map:如果 g.m == nil,意味着是第一次调用 Do 方法且没有调用过 DoChan 方法,所以初始化 g.m

3、检查是否有正在进行的调用:通过 c, ok := g.m[key]; ok 检查是否有一个对于该 key 的调用正在进行,如果 oktrue,则说明有一个对于该 key 的调用正在进行:

4、初始化并执行新的调用:如果没有一个对于该 key 的调用正在进行,则:

Do 方法的关键在于综合使用等待组(sync.WaitGroup)、互斥锁(sync.Mutex)以及一个映射(map),以确保:

doCall

doCall 方法负责执行给定 key 的函数 fn,并处理可能的错误和同步执行结果,确保所有请求该keygoroutine 得到统一的结果。该方法的源码如下所示:

func (g *Group) doCall(c *call, key string, fn func() (interface{}, error)) {
    // 定义正常返回标志
    normalReturn := false
    // 定义 panic 标志
    recovered := false

    // 使用双重 defer 来区分 panic 和 runtime.Goexit
    defer func() {
        // fn 函数里面调用了 runtime.Goexit 函数
        if !normalReturn && !recovered {
            // 将 errGoexit 的值赋给 c.err
            c.err = errGoexit
        }
        // 加锁
        g.mu.Lock()
        // 函数执行结束时释放锁
        defer g.mu.Unlock()
        // 标记 call 的完成
        c.wg.Done()
        // 保险起见,判断当前 key 对应的 call 是否被覆盖,没有被覆盖就从 map 中移除这个 key 
        if g.m[key] == c {
            delete(g.m, key)
        }
        // 判断执行 fn 的时候是否发生 panic
        if e, ok := c.err.(*panicError); ok {
            // 避免等待中的通道永久阻塞,如果发生了 panic,需要确保这个 panic 不能被捕获
            if len(c.chans) > 0 {
                // 开一个新的协程去 panic,这个 panic 就不会被捕获了
                go panic(e)
                // 保持当前 goroutine 的存活,这样等到 panic 之后,关于当前 goroutine 的信息就会出现在堆栈中
                select {}
            } else {
                // 直接 panic
                panic(e)
            }
        } else if c.err == errGoexit {
            // 如果是 errGoexit,什么都不用做,因为之前已经执行了 runtime.Goexit
        } else {
            // 向等待中的通道发送结果
            for _, ch := range c.chans {
                ch <- Result{c.val, c.err, c.dups > 0}
            }
        }
    }()

    func() {
        defer func() {
            // 如果 fn 没有正常执行完
            if !normalReturn {
                // 获取从 panic 中恢复的值
                if r := recover(); r != nil {
                    // 创建一个 `panicError` 实例并赋值给 c.err
                    c.err = newPanicError(r)
                }
            }
        }()
        // 执行函数调用
        c.val, c.err = fn()
        // 设置正常返回标志为 true
        normalReturn = true
    }()
    // 如果 fn 没有正常执行完,则发生了 panic
    if !normalReturn {
        // 设置 panic 标志为 true
        recovered = true
    }
}

代码剖析:

call 方法的关键在于使用了双重 defer 机制,结合标志 normalReturnrecovered 来判断 fn 函数的状态。normalReturnrecovered 有三组值:

DoChan

DoChan 方法与 Do 方法类似,但是它返回的是一个通道,通道在操作完成时接收到结果。返回值是通道,意味着我们能以非阻塞的方式等待结果。该方法的源码如下所示:

func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result {
    // 创建一个通道,类型为 Result
    ch := make(chan Result, 1)
    // 加锁
    g.mu.Lock()
    // 懒初始化 map
    if g.m == nil {
        g.m = make(map[string]*call)
    }
    // 判定该 key 是否有正在进行的调用
    if c, ok := g.m[key]; ok {
        // 重复调用次数加 1
        c.dups++
        // 将新通道添加到通道切片里
        c.chans = append(c.chans, ch)
        // 释放锁
        g.mu.Unlock()
        // 返回通道
        return ch
    }
    // 创建一个 call 实例,并将 ch 通道作为参数传递
    c := &call{chans: []chan<- Result{ch}}
    // 等待组加 1
    c.wg.Add(1)
    // key 和 call 映射
    g.m[key] = c
    // 释放锁
    g.mu.Unlock()
    // 异步执行调用
    go g.doCall(c, key, fn)
    // 返回通道
    return ch
}

DoChan 方法的执行流程如下所示:

1、创建一个大小为 1 的缓冲通道。

2、获取锁:通过 g.mu.Lock() 加锁,确保对内部的 g.m(一个 map,用于跟踪 key 的调用状态) 和 c.dups(对于该 key 的重复调用次数)以及 c.chans(通道切片) 的访问是并发安全的。

3、初始化 map:如果 g.m == nil,意味着是第一次调用 Do 方法且没有调用过 DoChan 方法,所以初始化 g.m

4、检查是否有正在进行的调用:通过 c, ok := g.m[key]; ok 检查是否有一个对于该 key 的调用正在进行,如果 oktrue,则说明有一个对于该 key 的调用正在进行:

5、初始化并异步执行新的调用:如果没有一个对于该 key 的调用正在进行,则:

DoChanDo 方法的区别在于同步共享结果的方式:

Do 方法:

DoChan 方法:为每个调用创建一个新的通道,将其加入到对应 keycall 实例的通道切片里,然后返回一个通道。这样,等 g.doCall 正常异步调用完成后,会向各个通道发送结果。

Forget

Forget 方法用于从 g.m 移除特定 key 的调用。

func (g *Group) Forget(key string) {
    // 加锁
    g.mu.Lock()
    // 移除特定的 key
    delete(g.m, key)
    // 释放锁
    g.mu.Unlock()
}

该方法在删除特定 key 前执行加锁操作,保护并发环境下 map 的读写操作,避免并发冲突。

小结

本文对 Go singleflight 的源码进行剖析,该包的主要作用是用于防止重复的请求,它确保给定的 key,函数在同一时间内只执行一次,多个请求共享同一结果。singleflight 能实现这种效果,关键点在于:

将多个相同请求合并成一个请求,确保函数只执行一次singleflight 为了解决这个问题,引入了互斥锁 sync.Mutexmap

互斥锁用于保护在并发环境下 map 的读写操作,避免并发冲突。

map 则负责将每一个唯一的 key 映射到 call 实例上,该实例包含了fn 函数的返回值和可能的错误等。

结果共享机制singleflight 通过阻塞式和非阻塞式两种方式,实现了结果的共享。

阻塞式机制:当多个请求通过 Do 方法进行相同的调用时,它们处于等待状态(里面借助了 sync.WaitGroup 来实现阻塞的效果),直到首个请求的 fn 函数的执行完毕。此后,等待的请求会接收到已完成的请求结果。

非阻塞式机制:相比于阻塞等待,当请求通过 DoChan 方法发起时,每个请求会立即获得一个专属的通道。这些请求可以继续执行其他操作,直到它们准备好从各自的通道接收结果。在接收结果时,如果结果尚未发送过来,也会暂时处于阻塞状态。

除了以上两个关键点,还需要考虑错误的处理,singleflight 通过使用双重 defer 的机制,用于辨别 函数正常执行完成、函数里发生了 panic 以及 函数里调用了 runtime.Goexit() 函数 三种情况,每种情况采取不同的处理机制。

到此这篇关于源码剖析Golang中singleflight的应用的文章就介绍到这了,更多相关Go singleflight内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文