go singleflight缓存雪崩源码分析与应用
作者:海生
这篇文章主要为大家介绍了go singleflight缓存雪崩源码分析与应用示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
一、缓存雪崩的应用
背景:
我们在重启pod的时候,此时会导致gocache中重启,然后缓存同时大批量失效。如果此时并发比较高,会有很多goroutine,去同时访问redis。
加单飞,将一组相同的请求合并成一个请求,实际上只会去请求一次,然后对所有的请求返回相同的结果
singlefight实验:
singlefight_test.go
需要重新从redis获取数据存取到 gocache。
func BenchmarkUse(b *testing.B) { ctx := context.Background() wordTouchRedisClient.Set(ctx, "k", "v", time.Second*600) goCache := cache.New(time.Second*60, time.Second*60) //sg := singleflight.Group{} for i := 0; i < b.N; i++ { _, ok := goCache.Get("k") if !ok { go func() { //_, _, _ = sg.Do("k", func() (interface{}, error) { v, _ := wordTouchRedisClient.Get(ctx, "k").Result() goCache.Set("k", v, time.Second*60) //return v, nil //}) }() } } } BenchmarkUse-8 94518 20173 ns/op
此时引入单飞
func BenchmarkUse(b *testing.B) { ctx := context.Background() wordTouchRedisClient.Set(ctx, "k", "v", time.Second*600) goCache := cache.New(time.Second*60, time.Second*60) sg := singleflight.Group{} for i := 0; i < b.N; i++ { _, ok := goCache.Get("k") if !ok { go func() { _, _, _ = sg.Do("k", func() (interface{}, error) { v, _ := wordTouchRedisClient.Get(ctx, "k").Result() goCache.Set("k", v, time.Second*60) return v, nil }) }() } } } BenchmarkUse-8 21307608 46.96 ns/op BenchmarkUse-2 25675206 45.37 ns/op
风险:
- 如果一个报错, 同一批都报错
二、源码分析
源码注释
// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package singleflight provides a duplicate function call suppression // mechanism. // singleflight包提供了重复函数调用抑制机制。 package singleflight // import "golang.org/x/sync/singleflight" import ( "bytes" "errors" "fmt" "runtime" "runtime/debug" "sync" ) // errGoexit indicates the runtime.Goexit was called in // the user given function. // errGoexit 表示 runtime.Goexit 被用户的函数调用了 var errGoexit = errors.New("runtime.Goexit was called") // A panicError is an arbitrary value recovered from a panic // panicError 是从panic中 恢复的任意值 // with the stack trace during the execution of given function. // 执行给定函数期间的堆栈跟踪 type panicError struct { value interface{} stack []byte } // Error implements error interface. // Error 实现错误接口 func (p *panicError) Error() string { return fmt.Sprintf("%v\n\n%s", p.value, p.stack) } func newPanicError(v interface{}) error { stack := debug.Stack() // The first line of the stack trace is of the form "goroutine N [status]:" // 堆栈跟踪的第一行的形式为“goroutine N [status]:” // but by the time the panic reaches Do the goroutine may no longer exist // 但当panic达到 Do 时,goroutine 可能不再存在 // and its status will have changed. Trim out the misleading line. // 并且它的状态将会改变。修剪掉误导性的线条。 if line := bytes.IndexByte(stack[:], '\n'); line >= 0 { stack = stack[line+1:] } return &panicError{value: v, stack: stack} } // call is an in-flight or completed singleflight.Do call // call 是正在进行的或已完成的 singleflight.Do() 调用 type call struct { wg sync.WaitGroup // These fields are written once before the WaitGroup is done // 这些字段在 WaitGroup 完成之前写入一次 // and are only read after the WaitGroup is done. // 并且仅在 WaitGroup 完成后才读取。 val interface{} err error // These fields are read and written with the singleflight // 这些字段是用 singleflight mutex 读写的 // mutex held before the WaitGroup is done, and are read but // 在 WaitGroup完成前。 // not written after the WaitGroup is done. // 并且 只读不写,在WaitGroup完成后。 dups int chans []chan<- Result } // Group represents a class of work and forms a namespace in // Group 代表一个工作类,并在其中形成一个命名空间 // which units of work can be executed with duplicate suppression. // 哪些工作单元可以通过重复抑制来执行。 type Group struct { mu sync.Mutex // protects m 用来保护m,并发安全 m map[string]*call // lazily initialized 延迟初始化 } // Result holds the results of Do, so they can be passed // Result保存了Do的结果,因此可以传递 // on a channel. // 在通道上 type Result struct { Val interface{} Err error Shared bool } // Do executes and returns the results of the given function, // Do 执行并返回给定函数的结果 // making sure that only one execution is in-flight for a given key at a time. // 确保在某一时刻对于给定的键只有一次正在执行 // If a duplicate comes in, the duplicate caller waits for the original // 如果有重复的调用者进入,则重复的调用者将等待最初者 // to complete and receives the same results. // 完成并收到相同的结果。 // The return value shared indicates whether v was given to multiple callers. // 返回值shared表示v是否被给予多个调用者。 func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) { g.mu.Lock() if g.m == nil { g.m = make(map[string]*call) } if c, ok := g.m[key]; ok { c.dups++ g.mu.Unlock() c.wg.Wait() if e, ok := c.err.(*panicError); ok { panic(e) } else if c.err == errGoexit { runtime.Goexit() } return c.val, c.err, true } c := new(call) c.wg.Add(1) g.m[key] = c g.mu.Unlock() g.doCall(c, key, fn) return c.val, c.err, c.dups > 0 } // DoChan is like Do but returns a channel that will receive the // results when they are ready. // DoChan 与 Do 类似,但返回一个chanel通道 接收准备好后的结果。 // // The returned channel will not be closed. // 返回的channel通道不会被关闭。 func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result { ch := make(chan Result, 1) g.mu.Lock() if g.m == nil { g.m = make(map[string]*call) } if c, ok := g.m[key]; ok { c.dups++ c.chans = append(c.chans, ch) g.mu.Unlock() return ch } c := &call{chans: []chan<- Result{ch}} c.wg.Add(1) g.m[key] = c g.mu.Unlock() go g.doCall(c, key, fn) return ch } // doCall handles the single call for a key. // doCall 处理对key的单个调用。 func (g *Group) doCall(c *call, key string, fn func() (interface{}, error)) { normalReturn := false recovered := false // use double-defer to distinguish panic from runtime.Goexit, // 使用双重延迟 来区分panic和runtime.Goexit, // more details see https://golang.org/cl/134395 // 更多详情参见 https://golang.org/cl/134395 defer func() { // the given function invoked runtime.Goexit // 调用给定函数runtime.Goexit if !normalReturn && !recovered { c.err = errGoexit } g.mu.Lock() defer g.mu.Unlock() c.wg.Done() if g.m[key] == c { delete(g.m, key) } if e, ok := c.err.(*panicError); ok { // In order to prevent the waiting channels from being blocked forever, // 为了防止等待通道永远被阻塞, // needs to ensure that this panic cannot be recovered. // 需要确保这种panic恐慌无法恢复。 if len(c.chans) > 0 { go panic(e) select {} // Keep this goroutine around so that it will appear in the crash dump. // 保留此 goroutine,以便它出现在故障转储中。 } else { panic(e) } } else if c.err == errGoexit { // Already in the process of goexit, no need to call again // 已经在goexit过程中,无需再次调用 } else { // Normal return // 正常返回 for _, ch := range c.chans { ch <- Result{c.val, c.err, c.dups > 0} } } }() func() { defer func() { if !normalReturn { // Ideally, we would wait to take a stack trace until we've determined // 理想情况下,我们会等待获取堆栈跟踪,直到我们确定 // whether this is a panic or a runtime.Goexit. // 这是恐慌还是runtime.Goexit。 // // Unfortunately, the only way we can distinguish the two is to see // 不幸的是,我们区分两者的唯一方法就是看 // whether the recover stopped the goroutine from terminating, and by // 恢复是否阻止 goroutine 终止,并且通过 // the time we know that, the part of the stack trace relevant to the // 当我们知道时,堆栈跟踪中与 // panic has been discarded. // 恐慌已被丢弃。 if r := recover(); r != nil { c.err = newPanicError(r) } } }() c.val, c.err = fn() normalReturn = true }() if !normalReturn { recovered = true } } // Forget tells the singleflight to forget about a key. Future calls // Forget 告诉 singleflight 忘记某个键。未来的calls调用 // to Do for this key will call the function rather than waiting for // 为此键执行的操作将调用该函数而不是等待 // an earlier call to complete. // 较早的调用完成。 func (g *Group) Forget(key string) { g.mu.Lock() delete(g.m, key) g.mu.Unlock() }
并发情况下的goroutine执行情况
func BenchmarkUse(b *testing.B) { ctx := context.Background() wordTouchRedisClient.Set(ctx, "k", "v", time.Second*600) goCache := cache.New(time.Second*60, time.Second*60) sg := singleflight.Group{} for i := 0; i < b.N; i++ { _, ok := goCache.Get("k") if !ok { go func() { _, _, _ = sg.Do("k", func() (interface{}, error) { v, _ := wordTouchRedisClient.Get(ctx, "k").Result() goCache.Set("k", v, time.Second*60) return v, nil }) }() } } }
如图表展示
就是在第一个 子goroutine的从开始到结束,启动的 其余子goroutine,都和第一个goroutine,都拥有相同的call,为同一个group。然后返回同样的结果。
第一个子goroutine,结束完,就删掉key,然后在下面的goroutine,为新的一组。
以上就是go singleflight缓存雪崩源码分析与应用的详细内容,更多关于go singleflight缓存雪崩的资料请关注脚本之家其它相关文章!