Golang使用singleflight解决并发重复请求
作者:写代码的lorre
背景
高并发的场景下,经常会出现并发重复请求资源的情况。
比如说,缓存失效时,我们去请求db获取最新的数据,如果这个key是一个热key,那么在缓存失效的瞬间,可能会有大量的并发请求访问到db,导致db访问量陡增,甚至是打崩db,这种场景也就是我们常说的缓存击穿。
针对同一个key的并发请求,这些请求和响应实际上都是一样的。所以我们可以把这种并发请求优化为:只进行一次实际请求去访问资源,然后得到实际响应,所有的并发请求共享这个实际响应的结果
针对分布式场景,我们可以使用分布式锁来实现
针对单机场景,我们可以使用singleflight来实现
singleflight
singleflight是golang内置的一个包,这个包提供了对重复函数调用的抑制功能,也就是保证并发请求只会有一个实际请求去访问资源,所有并发请求共享实际响应。
使用
singleflight在golang sdk源码中的路径为:src/internal/singleflight
但是internal是golang sdk内部的包,所以我们不能直接去使用
使用步骤:
- 引入go mod
- 使用singleflight包
引入go mod
go get golang.org/x/sync
使用singleflight包
singleflight包主要提供了三个方法
// 方法作用:保证并发请求只会执行一次函数,并共享实际响应 // 请求参数 // key:请求的唯一标识,相同的key会被视为并发请求 // fn:实际需要执行的函数 // 响应参数 // v:实际执行函数的返回值 // err:实际执行函数的错误 // shared:返回值v是否被共享,若存在并发请求,则为true;若不存在并发请求则为false func (g *Group) Do(key string, fn func() (any, error)) (v any, err error, shared bool) // 方法作用:和Do类似,不过方法返回的是chan func (g *Group) DoChan(key string, fn func() (any, error)) (<-chan Result, bool) // 方法作用:删除key,一般来说不会直接使用这个方法 func (g *Group) ForgetUnshared(key string) bool
针对以上的三个方法,我们重点了解一下Do方法的使用即可
没有使用singleflight之前
package main import ( "fmt" "sync" "testing" "time" ) var ( mx sync.Mutex wg sync.WaitGroup cacheData = make(map[string]string, 0) ) func TestSingleFlight(t *testing.T) { // 添加10个任务,模拟并发请求 wg.Add(10) for i := 0; i < 10; i++ { go getData("demo") } // 等待所有任务完成 wg.Wait() } func getData(key string) { data, _ := getDataFromCache(key) if len(data) == 0 { // 缓存没有找到,则进行回源 data, _ = getDataFromDB(key) // 设置缓存 mx.Lock() cacheData[key] = data mx.Unlock() } fmt.Println(data) // 任务完成 wg.Done() } func getDataFromCache(key string) (string, error) { return cacheData[key], nil } func getDataFromDB(key string) (string, error) { fmt.Println("getDataFromDB key: ", key) // 模拟访问db的耗时 time.Sleep(10 * time.Millisecond) return "db data", nil }
执行TestSingleFlight函数后,会发现并发请求多次调用了getDataFromDB函数
使用singleflight之后
package main import ( "fmt" "golang.org/x/sync/singleflight" "sync" "testing" "time" ) var ( mx sync.Mutex wg sync.WaitGroup g singleflight.Group cacheData = make(map[string]string, 0) ) func TestSingleFlight(t *testing.T) { // 添加10个任务 wg.Add(10) for i := 0; i < 10; i++ { go getDataSingleWarp("demo") } // 等待所有任务完成 wg.Wait() } func getDataSingleWarp(key string) { data, _ := getDataFromCache(key) if len(data) == 0 { // 使用singleflight来避免并发请求,实际改动就这一行 d, _, shared := g.Do(key, func() (interface{}, error) { return getDataFromDB(key) }) fmt.Println(shared) data = d.(string) // 设置缓存 mx.Lock() cacheData[key] = data mx.Unlock() } fmt.Println(data) wg.Done() } func getDataFromCache(key string) (string, error) { return cacheData[key], nil } func getDataFromDB(key string) (string, error) { fmt.Println("getDataFromDB key: ", key) // 模拟访问db的耗时 time.Sleep(10 * time.Millisecond) return "db data", nil }
执行TestSingleFlight函数后,会发现只调用了一次getDataFromDB函数
源码分析
- Group struct:封装并发请求
- call struct:每一个需要执行的函数,都会被封装成一个call
- func Do:对并发请求进行控制的方法
// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package singleflight provides a duplicate function call suppression // mechanism. package singleflight // import "golang.org/x/sync/singleflight" import ( "bytes" "errors" "fmt" "runtime" "runtime/debug" "sync" ) // errGoexit indicates the runtime.Goexit was called in // the user given function. var errGoexit = errors.New("runtime.Goexit was called") // A panicError is an arbitrary value recovered from a panic // with the stack trace during the execution of given function. type panicError struct { value interface{} stack []byte } // Error implements error interface. func (p *panicError) Error() string { return fmt.Sprintf("%v\n\n%s", p.value, p.stack) } func newPanicError(v interface{}) error { stack := debug.Stack() // The first line of the stack trace is of the form "goroutine N [status]:" // but by the time the panic reaches Do the goroutine may no longer exist // and its status will have changed. Trim out the misleading line. if line := bytes.IndexByte(stack[:], '\n'); line >= 0 { stack = stack[line+1:] } return &panicError{value: v, stack: stack} } // call is an in-flight or completed singleflight.Do call type call struct { // 保证相同key,只会进行一次实际请求 // 相同key的并发请求会共享返回 wg sync.WaitGroup // These fields are written once before the WaitGroup is done // and are only read after the WaitGroup is done. // 实际执行函数的返回值和错误 val interface{} err error // forgotten indicates whether Forget was called with this call's key // while the call was still in flight. // 是否已删除当前并发请求的key forgotten bool // These fields are read and written with the singleflight // mutex held before the WaitGroup is done, and are read but // not written after the WaitGroup is done. // 并发请求的次数 dups int chans []chan<- Result } // Group represents a class of work and forms a namespace in // which units of work can be executed with duplicate suppression. type Group struct { mu sync.Mutex // protects m // key代表请求的唯一标识,相同的key会被视为并发请求 // value代表实际请求,每一个实际请求都会被封装为call m map[string]*call // lazily initialized } // Result holds the results of Do, so they can be passed // on a channel. type Result struct { Val interface{} Err error Shared bool } // Do executes and returns the results of the given function, making // sure that only one execution is in-flight for a given key at a // time. If a duplicate comes in, the duplicate caller waits for the // original to complete and receives the same results. // The return value shared indicates whether v was given to multiple callers. func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) { // 加锁 g.mu.Lock() // 懒加载 if g.m == nil { g.m = make(map[string]*call) } // 判断是否有并发请求,如果key已经存在,则说明存在并发请求 if c, ok := g.m[key]; ok { // 并发请求次数+1 c.dups++ // 解锁 g.mu.Unlock() // 等待实际请求执行完 c.wg.Wait() if e, ok := c.err.(*panicError); ok { panic(e) } else if c.err == errGoexit { runtime.Goexit() } // 共享响应 return c.val, c.err, true } c := new(call) c.wg.Add(1) // 添加并发请求key g.m[key] = c // 解锁 g.mu.Unlock() // 进行实际请求 g.doCall(c, key, fn) return c.val, c.err, c.dups > 0 } // DoChan is like Do but returns a channel that will receive the // results when they are ready. // // The returned channel will not be closed. func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result { ch := make(chan Result, 1) g.mu.Lock() if g.m == nil { g.m = make(map[string]*call) } if c, ok := g.m[key]; ok { c.dups++ c.chans = append(c.chans, ch) g.mu.Unlock() return ch } c := &call{chans: []chan<- Result{ch}} c.wg.Add(1) g.m[key] = c g.mu.Unlock() go g.doCall(c, key, fn) return ch } // doCall handles the single call for a key. func (g *Group) doCall(c *call, key string, fn func() (interface{}, error)) { // 正常返回标识 normalReturn := false // 是否执行了recover标识 recovered := false // use double-defer to distinguish panic from runtime.Goexit, // more details see https://golang.org/cl/134395 defer func() { // the given function invoked runtime.Goexit if !normalReturn && !recovered { c.err = errGoexit } // 实际请求执行完成 c.wg.Done() // 加锁 g.mu.Lock() defer g.mu.Unlock() // 删除并发请求key if !c.forgotten { delete(g.m, key) } if e, ok := c.err.(*panicError); ok { // In order to prevent the waiting channels from being blocked forever, // needs to ensure that this panic cannot be recovered. if len(c.chans) > 0 { go panic(e) select {} // Keep this goroutine around so that it will appear in the crash dump. } else { panic(e) } } else if c.err == errGoexit { // Already in the process of goexit, no need to call again } else { // Normal return for _, ch := range c.chans { ch <- Result{c.val, c.err, c.dups > 0} } } }() // 匿名函数立即执行 func() { defer func() { if !normalReturn { // Ideally, we would wait to take a stack trace until we've determined // whether this is a panic or a runtime.Goexit. // // Unfortunately, the only way we can distinguish the two is to see // whether the recover stopped the goroutine from terminating, and by // the time we know that, the part of the stack trace relevant to the // panic has been discarded. if r := recover(); r != nil { c.err = newPanicError(r) } } }() // 执行实际函数 c.val, c.err = fn() // 正常返回 normalReturn = true }() if !normalReturn { recovered = true } } // Forget tells the singleflight to forget about a key. Future calls // to Do for this key will call the function rather than waiting for // an earlier call to complete. func (g *Group) Forget(key string) { g.mu.Lock() if c, ok := g.m[key]; ok { c.forgotten = true } delete(g.m, key) g.mu.Unlock() }
到此这篇关于Golang使用singleflight解决并发重复请求的文章就介绍到这了,更多相关Go singleflight内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!