在Vue3和TypeScript中大文件分片上传的实现与优化
作者:黑白灰22
引言
在现代 Web 开发中,数据上传的需求日益增多,特别是在处理大规模数据时,传统的大文件上传方式已经难以满足高效、稳定的需求。本文将结合实际项目,详细介绍如何在 Vue 3 和 TypeScript 环境中实现大文件分片上传,并进行性能优化。
1. 项目技术栈
项目采用了以下技术栈:
前端:Vue 3 + TypeScript + Vue Router + Pinia + Element Plus + Axios + Normalize.css
- 使用 Vue 3 Composition API 和 Pinia 管理全局状态,确保代码结构清晰,状态管理便捷。
- TypeScript 提供了强大的类型检查机制,减少了运行时错误,增强了代码的可维护性。
- Vue Router 4 负责管理应用路由,Element Plus 提供了丰富的 UI 组件,而 Axios 则用于处理网络请求。
- 使用 Vite 作为开发和构建工具,提升了开发效率。
后端:Node.js + Koa.js + TypeScript + Koa Router
- 通过 Koa.js 与 TypeScript 的结合,使用 Koa Router 加强服务端路由管理,优化开发体验,并集成了全局异常拦截与日志功能。
2. 前端设计与实现
前端的核心在于如何高效处理大文件的上传。传统的单一文件上传方式容易因网络波动导致上传失败,而分片上传则能有效避免此类问题。以下是分片上传的主要实现步骤:
文件切片: 使用
Blob.prototype.slice方法,将大文件切分为多个 10MB 的小块。每个切片都具有唯一的标识,确保了上传的完整性和正确性。文件秒传,即在服务端已经存在了上传的资源,所以当用户再次上传时会直接提示上传成功。文件秒传需要依赖上一步生成的 hash,即在上传前,先计算出文件 hash,并把 hash 发送给服务端进行验证,由于 hash 的唯一性,所以一旦服务端能找到 hash 相同的文件,则直接返回上传成功的信息即可。
const CHUNK_SIZE = 10 * 1024 * 1024
// 文件上传服务器
async function submitUpload() {
if (!file.value) {
ElMessage.error('Oops, 请您选择文件后再操作~~.')
return
}
// 将文件切片
const chunks: IFileSlice[] = []
let cur = 0
while (cur < file.value.raw!.size) {
const slice = file.value.raw!.slice(cur, cur + CHUNK_SIZE)
chunks.push({
chunk: slice,
size: slice.size
})
cur += CHUNK_SIZE
}
// 计算hash
hash.value = await calculateHash(chunks)
fileChunks.value = chunks.map((item, index) => ({
...item,
hash: `${hash.value}-${index}`,
progress: 0
}))
// 校验文件是否已存在
await fileStore.verifyFileAction({
filename: file.value.name,
fileHash: hash.value
})
const { exists } = storeToRefs(fileStore)
if (!exists.value) {
await uploadChunks({
chunks,
hash: hash.value,
totalChunksCount: fileChunks.value.length,
uploadedChunks: 0
})
} else {
ElMessage.success('秒传: 文件上传成功')
}
}
并发上传与调度: 实现了一个并发控制的 Scheduler,限制同时上传的切片数为 3,避免因过多并发请求导致的系统卡顿或崩溃。
// scheduler.ts
export class Scheduler {
private queue: (() => Promise<void>)[] = []
private maxCount: number
private runCounts = 0
constructor(limit: number) {
this.maxCount = limit
}
add(promiseCreator: () => Promise<void>) {
this.queue.push(promiseCreator)
this.run()
}
private run() {
if (this.runCounts >= this.maxCount || this.queue.length === 0) {
return
}
this.runCounts++
const task = this.queue.shift()!
task().finally(() => {
this.runCounts--
this.run()
})
}
}
// UploadFile.vue
// 切片上传 limit-限制并发数
async function uploadChunks({
chunks,
hash,
totalChunksCount,
uploadedChunks,
limit = 3
}: IUploadChunkParams) {
const scheduler = new Scheduler(limit)
const totalChunks = chunks.length
let uploadedChunksCount = 0
for (let i = 0; i < chunks.length; i++) {
const { chunk } = chunks[i]
let h = ''
if (chunks[i].hash) {
h = chunks[i].hash as string
} else {
h = `${hash}-${chunks.indexOf(chunks[i])}`
}
const params = {
chunk,
hash: h,
fileHash: hash,
filename: file.value?.name as string,
size: file.value?.size
} as IUploadChunkControllerParams
scheduler.add(() => {
const controller = new AbortController()
controllersMap.set(i, controller)
const { signal } = controller
console.log(`开始上传切片 ${i}`)
if (!upload.value) {
return Promise.reject('上传暂停')
}
return fileStore
.uploadChunkAction(params, onTick, i, signal)
.then(() => {
console.log(`完成切片的上传 ${i}`)
uploadedChunksCount++
// 判断所有切片都已上传完成后,调用mergeRequest方法
if (uploadedChunksCount === totalChunks) {
mergeRequest()
}
})
.catch((error) => {
if (error.name === 'AbortError') {
console.log('上传被取消')
} else {
throw error
}
})
.finally(() => {
// 完成后将控制器从map中移除
controllersMap.delete(i)
})
})
}
function onTick(index: number, percent: number) {
chunks[index].percentage = percent
const newChunksProgress = chunks.reduce(
(sum, chunk) => sum + (chunk.percentage || 0),
0
)
const totalProgress =
(newChunksProgress + uploadedChunks * 100) / totalChunksCount
file.value!.percentage = Number(totalProgress.toFixed(2))
}
}
Web Worker 计算文件 Hash: 为了避免阻塞主线程,使用 Web Worker 计算每个切片的 Hash 值,用于服务器端的文件校验。这一步确保了文件的唯一性,避免了重复上传。
// hash.ts
import SparkMD5 from 'spark-md5'
const ctx: Worker = self as any
ctx.onmessage = (e) => {
// 接收主线程的通知
const { chunks } = e.data
const blob = new Blob(chunks)
const spark = new SparkMD5.ArrayBuffer()
const reader = new FileReader()
reader.onload = (e) => {
spark.append(e.target?.result as ArrayBuffer)
const hash = spark.end()
ctx.postMessage({
progress: 100,
hash
})
}
reader.onerror = (e: any) => {
ctx.postMessage({
error: e.message
})
}
reader.onprogress = (e) => {
if (e.lengthComputable) {
const progress = (e.loaded / e.total) * 100
ctx.postMessage({
progress
})
}
}
// 读取Blob对象的内容
reader.readAsArrayBuffer(blob)
}
ctx.onerror = (e) => {
ctx.postMessage({
error: e.message
})
}
// UploadFile.vue
// 使用Web Worker进行hash计算的函数
function calculateHash(fileChunks: IFileSlice[]): Promise<string> {
return new Promise<string>((resolve, reject) => {
const worker = new HashWorker()
worker.postMessage({ chunks: fileChunks })
worker.onmessage = (e) => {
const { hash } = e.data
if (hash) {
resolve(hash)
}
}
worker.onerror = (event) => {
worker.terminate()
reject(event.error)
}
})
}
断点续传与秒传: 通过前端判断服务器上已有的文件切片,支持断点续传和秒传功能。用户不需要重新上传整个文件,而只需上传未完成的部分,极大地提升了上传效率。
// 上传暂停和继续
async function handlePause() {
upload.value = !upload.value
if (upload.value) {
// 校验文件是否已存在
if (!file.value?.name) {
return
}
await fileStore.verifyFileAction({
filename: file.value.name,
fileHash: hash.value
})
const { exists, existsList } = storeToRefs(fileStore)
const newChunks = fileChunks.value.filter((item) => {
return !existsList.value.includes(item.hash || '')
})
console.log('newChunks', newChunks)
if (!exists.value) {
await uploadChunks({
chunks: newChunks,
hash: hash.value,
totalChunksCount: fileChunks.value.length,
uploadedChunks: fileChunks.value.length - newChunks.length
})
} else {
ElMessage.success('秒传: 文件上传成功')
}
} else {
console.log('暂停上传')
abortAll()
}
}
用户体验优化: 为了提升用户体验,添加了拖拽上传、上传进度显示、文件暂停与续传等功能。这些优化不仅增强了系统的健壮性,还使用户在处理大文件时体验更为流畅。
3. 后端实现与整合
后端使用 Koa.js 构建,核心在于如何高效接收并合并前端上传的文件切片。具体步骤如下:
文件接收与存储: 通过 Koa Router 定义的 API 端点接收前端上传的切片,使用
ctx.request.files获取上传的文件,并通过ctx.request.body获取其他字段信息。
// verify.ts 校验文件是否存储
import { type Context } from 'koa'
import {
type IUploadedFile,
type GetFileControllerResponse,
type IVefiryFileControllerParams,
type VefiryFileControllerResponse
} from '../utils/types'
import fileSizesStore from '../utils/fileSizesStore'
import { HttpError, HttpStatus } from '../utils/http-error'
import {
UPLOAD_DIR,
extractExt,
getChunkDir,
getUploadedList,
isValidString
} from '../utils'
import { IMiddleware } from 'koa-router'
import { Controller } from '../controller'
import path from 'path'
import fse from 'fs-extra'
const fnVerify: IMiddleware = async (
ctx: Context,
next: () => Promise<void>
) => {
const { filename, fileHash } = ctx.request
.body as IVefiryFileControllerParams
if (!isValidString(fileHash)) {
throw new HttpError(HttpStatus.PARAMS_ERROR, 'fileHash 不能为空')
}
if (!isValidString(filename)) {
throw new HttpError(HttpStatus.PARAMS_ERROR, 'filename 不能为空')
}
const ext = extractExt(filename!)
const filePath = path.resolve(UPLOAD_DIR, `${fileHash}${ext}`)
let isExist = false
let existsList: string[] = []
if (fse.existsSync(filePath)) {
isExist = true
} else {
existsList = await getUploadedList(fileHash!)
}
ctx.body = {
code: 0,
data: { exists: isExist, existsList: existsList }
} as VefiryFileControllerResponse
await next()
}
// 获取所有已上传文件的接口
const fnGetFile: IMiddleware = async (
ctx: Context,
next: () => Promise<void>
): Promise<void> => {
const files = await fse.readdir(UPLOAD_DIR).catch(() => [])
const fileListPromises = files
.filter((file) => !file.endsWith('.json'))
.map(async (file) => {
const filePath = path.resolve(UPLOAD_DIR, file)
const stat = fse.statSync(filePath)
const ext = extractExt(file)
let fileHash = ''
let size = stat.size
if (file.includes('chunkDir_')) {
fileHash = file.slice('chunkDir_'.length)
const chunkDir = getChunkDir(fileHash)
const chunks = await fse.readdir(chunkDir)
let totalSize = 0
for (const chunk of chunks) {
const chunkPath = path.resolve(chunkDir, chunk)
const stat = await fse.stat(chunkPath)
totalSize += stat.size
}
size = totalSize
} else {
fileHash = file.slice(0, file.length - ext.length)
}
const total = await fileSizesStore.getFileSize(fileHash)
return {
name: file,
uploadedSize: size,
totalSize: total,
time: stat.mtime.toISOString(),
hash: fileHash
} as IUploadedFile
})
const fileList = await Promise.all(fileListPromises)
ctx.body = {
code: 0,
data: { files: fileList }
} as GetFileControllerResponse
await next()
}
const controllers: Controller[] = [
{
method: 'POST',
path: '/api/verify',
fn: fnVerify
},
{
method: 'GET',
path: '/api/files',
fn: fnGetFile
}
]
export default controllers
// upload.ts 上传切片
import { IMiddleware } from 'koa-router'
import { UPLOAD_DIR, extractExt, getChunkDir, isValidString } from '../utils'
import fileSizesStore from '../utils/fileSizesStore'
import { HttpError, HttpStatus } from '../utils/http-error'
import {
type IUploadChunkControllerParams,
type UploadChunkControllerResponse
} from '../utils/types'
import path from 'path'
import fse from 'fs-extra'
import { Controller } from '../controller'
import { Context } from 'koa'
import koaBody from 'koa-body'
const fnUpload: IMiddleware = async (
ctx: Context,
next: () => Promise<void>
) => {
const { filename, fileHash, hash, size } = ctx.request
.body as IUploadChunkControllerParams
const chunkFile = ctx.request.files?.chunk
if (!chunkFile || Array.isArray(chunkFile)) {
throw new Error(`无效的块文件参数`)
}
const chunk = await fse.readFile(chunkFile.filepath)
if (!isValidString(fileHash)) {
throw new HttpError(HttpStatus.PARAMS_ERROR, 'fileHash 不能为空: ')
}
if (isValidString(chunk)) {
throw new HttpError(HttpStatus.PARAMS_ERROR, 'chunk 不能为空')
}
if (!isValidString(filename)) {
throw new HttpError(HttpStatus.PARAMS_ERROR, 'filename 不能为空')
}
const params = {
filename,
fileHash,
hash,
chunk,
size
} as IUploadChunkControllerParams
fileSizesStore.storeFileSize(fileHash, size)
const ext = extractExt(params.filename!)
const filePath = path.resolve(UPLOAD_DIR, `${fileHash}${ext}`)
const chunkDir = getChunkDir(params.fileHash!)
const chunkPath = path.resolve(chunkDir, params.hash!)
// 切片目录不存在,创建切片目录
if (!(await fse.pathExists(chunkDir))) {
await fse.mkdir(chunkDir, { recursive: true })
}
// 文件存在直接返回
if (await fse.pathExists(filePath)) {
ctx.body = {
code: 1,
message: 'file exist',
data: { hash: fileHash }
} as UploadChunkControllerResponse
return
}
// 切片存在直接返回
if (await fse.pathExists(chunkPath)) {
ctx.body = {
code: 2,
message: 'chunk exist',
data: { hash: fileHash }
} as UploadChunkControllerResponse
return
}
await fse.move(chunkFile.filepath, `${chunkDir}/${hash}`)
ctx.body = {
code: 0,
message: 'received file chunk',
data: { hash: params.fileHash }
} as UploadChunkControllerResponse
await next()
}
const controllers: Controller[] = [
{
method: 'POST',
path: '/api/upload',
fn: fnUpload,
middleware: [koaBody({ multipart: true })]
}
]
export default controllers
切片合并: 当所有切片上传完成后,后端会根据前端传来的请求对切片进行合并。这里使用了 Node.js 的 Stream 进行并发写入,提高了合并效率,并减少了内存占用。
// merge.ts
import { UPLOAD_DIR, extractExt, getChunkDir, isValidString } from '../utils'
import { HttpError, HttpStatus } from '../utils/http-error'
import type {
IMergeChunksControllerParams,
MergeChunksControllerResponse
} from '../utils/types'
import path from 'path'
import fse from 'fs-extra'
import { IMiddleware } from 'koa-router'
import { Controller } from '../controller'
import { Context } from 'koa'
// 写入文件流
const pipeStream = (
filePath: string,
writeStream: NodeJS.WritableStream
): Promise<boolean> => {
return new Promise((resolve) => {
const readStream = fse.createReadStream(filePath)
readStream.on('end', () => {
fse.unlinkSync(filePath)
resolve(true)
})
readStream.pipe(writeStream)
})
}
const mergeFileChunk = async (
filePath: string,
fileHash: string,
size: number
) => {
const chunkDir = getChunkDir(fileHash)
const chunkPaths = await fse.readdir(chunkDir)
// 切片排序
chunkPaths.sort((a, b) => {
return a.split('-')[1] - b.split('-')[1]
})
// 写入文件
await Promise.all(
chunkPaths.map((chunkPath, index) =>
pipeStream(
path.resolve(chunkDir, chunkPath),
// 根据 size 在指定位置创建可写流
fse.createWriteStream(filePath, {
start: index * size
})
)
)
)
// 合并后删除保存切片的目录
fse.rmdirSync(chunkDir)
}
const fnMerge: IMiddleware = async (
ctx: Context,
next: () => Promise<void>
) => {
const { filename, fileHash, size } = ctx.request
.body as IMergeChunksControllerParams
if (!isValidString(fileHash)) {
throw new HttpError(HttpStatus.PARAMS_ERROR, 'fileHash 不能为空: ')
}
if (!isValidString(filename)) {
throw new HttpError(HttpStatus.PARAMS_ERROR, 'filename 不能为空')
}
const ext = extractExt(filename!)
const filePath = path.resolve(UPLOAD_DIR, `${fileHash}${ext}`)
await mergeFileChunk(filePath, fileHash!, size!)
ctx.body = {
code: 0,
message: 'file merged success',
data: { hash: fileHash }
} as MergeChunksControllerResponse
await next()
}
const controllers: Controller[] = [
{
method: 'POST',
path: '/api/merge',
fn: fnMerge
}
]
export default controllers
全局异常处理与日志记录: 为了保证系统的稳定性,服务端实现了全局异常处理和日志记录功能,确保在出现问题时能快速定位并修复。
4. 遇到的问题与解决方案
在实现过程中,我们也遇到了一些挑战:
- 代码结构混乱:在初期开发时,大量的代码逻辑被集中在一起,缺乏合理的抽象与封装。我们通过组件化、工具类方法抽取、状态逻辑分离等方式,逐步优化了代码结构。
- 网络请求封装:为了提高代码的可维护性,我们封装了 Axios,并抽离了 API 相关操作。这样一来,未来即使更换网络请求库,也只需修改一个文件即可。
- 并发请求过多:通过实现一个带有并发限制的
Scheduler,我们确保了系统的稳定性,避免了因过多并发请求导致的系统性能问题。
5. 开发流程图

6. 总结
本文介绍了如何在 Vue 3 与 TypeScript 环境中实现大文件的分片上传,并在此基础上进行了多方面的优化。通过这些技术手段,我们不仅提升了系统的性能,还极大地改善了用户体验。随着数据量的不断增长,这种分片上传的方式将会越来越普及,并在未来的开发中发挥重要作用。
这种架构设计为处理大文件上传提供了一个高效、可靠的解决方案,并且具有很强的扩展性和可维护性。希望通过本文的介绍,能为大家在实际项目中解决类似问题提供一些参考和借鉴。
以上就是在Vue3和TypeScript中大文件分片上传的实现与优化的详细内容,更多关于Vue3 TypeScript大文件分片上传的资料请关注脚本之家其它相关文章!
