MySQL INSERT 导致的死锁问题分析及解决方案
作者:FatalFlower
前言
本文选用的 MySQL
版本:8.4.6
使用的数据
表结构:
DROP TABLE IF EXISTS store_snapshot_ext; DROP TABLE IF EXISTS store_snapshot; create table store_snapshot ( id varchar(32) not null comment '主键' primary key, warehouse_id varchar(32) null comment '仓库主键', snap_date datetime null comment '快照日期', create_id varchar(32) null comment '创建人id', create_time datetime null comment '创建日期', modify_id varchar(32) null comment '更新人 id', modify_time datetime null comment '更新时间' ) comment '仓库快照'; create table store_snapshot_ext ( id varchar(32) not null comment '主键' primary key, fk_snapshot_id varchar(32) null comment '快照外键', ext_attr varchar(32) null comment '扩展属性', create_id varchar(32) null comment '创建人id', create_time datetime null comment '创建日期', modify_id varchar(32) null comment '更新人 id', modify_time datetime null comment '更新时间', constraint store_snapshot_ext___fk_snapshot_id foreign key (fk_snapshot_id) references store_snapshot (id) ) comment '仓库快照扩展属性';
这里使用 Java
语言模拟并发情况下对数据的插入:
import cn.hutool.core.date.DateTime; import cn.hutool.core.util.RandomUtil; import org.junit.jupiter.api.Test; import org.junit.jupiter.api.extension.ExtendWith; import org.mybatis.spring.annotation.MapperScan; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.test.context.junit.jupiter.SpringExtension; import org.springframework.transaction.PlatformTransactionManager; import org.springframework.transaction.TransactionDefinition; import org.springframework.transaction.TransactionStatus; import org.springframework.transaction.annotation.EnableTransactionManagement; import org.springframework.transaction.support.DefaultTransactionDefinition; import org.tea.common.entity.StoreSnapshot; import org.tea.common.entity.StoreSnapshotExt; import org.tea.common.mapper.StoreSnapshotExtMapper; import org.tea.common.mapper.StoreSnapshotMapper; import javax.annotation.Resource; import java.util.UUID; import java.util.concurrent.CountDownLatch; @ExtendWith(SpringExtension.class) @SpringBootTest(classes = StoreSnapshotApplication.class) public class StoreSnapBenchTest { @Resource private PlatformTransactionManager txManager; @Resource private StoreSnapshotMapper storeSnapshotMapper; @Resource private StoreSnapshotExtMapper storeSnapshotExtMapper; @Test public void batchTest() throws InterruptedException { Thread[] ts = new Thread[10]; CountDownLatch startLatch = new CountDownLatch(1); CountDownLatch endLatch = new CountDownLatch(ts.length); for (int i = 0; i < ts.length; i++) { ts[i] = new Thread(() -> { DefaultTransactionDefinition definition = new DefaultTransactionDefinition(); // 设置事务隔离级别为 "可重复读" definition.setIsolationLevel(TransactionDefinition.ISOLATION_REPEATABLE_READ); TransactionStatus status = txManager.getTransaction(definition); try { /** 提高事务竞争的激烈度 */ startLatch.await(); /** 一般情况下,不会使用如下的循环方式来插入数据,这里这么做的目的是为了 提高事务的处理时间,增大锁的竞争激烈度 */ for (int j = 0; j < 2000; j++) { StoreSnapshot snapshot = new StoreSnapshot(); // 使用 UUID 的方式来引发 Page 分裂 snapshot.setId(UUID.randomUUID().toString().replaceAll("-", "")); snapshot.setWarehouseId("warehouse_1"); snapshot.setSnapDate(new DateTime()); snapshot.init(); storeSnapshotMapper.insertSelective(snapshot); StoreSnapshotExt snapshotExt = new StoreSnapshotExt(); snapshotExt.setId(UUID.randomUUID().toString().replaceAll("-", "")); snapshotExt.setExtAttr(RandomUtil.randomString(32)); // 注意这里的外键,后文会分析这个外键带来的一些影响 snapshotExt.setFkSnapshotId(snapshot.getId()); storeSnapshotExtMapper.insertSelective(snapshotExt); } txManager.commit(status); } catch (InterruptedException e) { txManager.rollback(status); throw new RuntimeException(e); } finally { endLatch.countDown(); } }); } for (Thread t : ts) { t.start(); } startLatch.countDown(); endLatch.await(); } } @SpringBootApplication @EnableTransactionManagement @MapperScan("org.tea.*.mapper") class StoreSnapshotApplication { public static void main(String[] args) { SpringApplication.run(StoreSnapshotApplication.class, args); } }
在执行完上面的测试用例后,查看 MySQL
InnoDB
的状态信息,发现已经出现了死锁:
------------------------ LATEST DETECTED DEADLOCK ------------------------ 2025-08-26 21:01:55 135637563962944 *** (1) TRANSACTION: TRANSACTION 3866, ACTIVE 2 sec inserting mysql tables in use 1, locked 1 LOCK WAIT 27 lock struct(s), heap size 8312, 220 row lock(s), undo log entries 430 MySQL thread id 17, OS thread handle 135637553456704, query id 8736 localhost ::1 root update INSERT INTO store_snapshot (create_id, warehouse_id, snap_date, modify_id, id, modify_time, create_time) VALUES ('system', 'warehouse_1', '2025-08-26 21:01:54', 'system', '402ce43f650a483eb0c9c5138e50d6f0', '2025-08-26 21:01:54', '2025-08-26 21:01:54') *** (1) HOLDS THE LOCK(S): RECORD LOCKS space id 10 page no 11 n bits 240 index PRIMARY of table `lxh_db`.`store_snapshot` trx id 3866 lock_mode X Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0 0: len 8; hex 73757072656d756d; asc supremum;; *** (1) WAITING FOR THIS LOCK TO BE GRANTED: RECORD LOCKS space id 10 page no 20 n bits 160 index PRIMARY of table `lxh_db`.`store_snapshot` trx id 3866 lock_mode X locks gap before rec insert intention waiting Record lock, heap no 5 PHYSICAL RECORD: n_fields 9; compact format; info bits 0 0: len 30; hex 343033303963393162373166343731633936323164616565643434666363; asc 40309c91b71f471c9621daeed44fcc; (total 32 bytes); 1: len 6; hex 000000000f14; asc ;; 2: len 7; hex 82000001070630; asc 0;; 3: len 11; hex 77617265686f7573655f31; asc warehouse_1;; 4: len 5; hex 99b7755074; asc uPt;; 5: len 6; hex 73797374656d; asc system;; 6: len 5; hex 99b7755074; asc uPt;; 7: len 6; hex 73797374656d; asc system;; 8: len 5; hex 99b7755074; asc uPt;; *** (2) TRANSACTION: TRANSACTION 3860, ACTIVE 3 sec inserting mysql tables in use 1, locked 1 LOCK WAIT 46 lock struct(s), heap size 24696, 1258 row lock(s), undo log entries 2474 MySQL thread id 11, OS thread handle 135637890971200, query id 12330 localhost ::1 root update INSERT INTO store_snapshot (create_id, warehouse_id, snap_date, modify_id, id, modify_time, create_time) VALUES ('system', 'warehouse_1', '2025-08-26 21:01:55', 'system', '917f3578682c467384e520fd6c00b86d', '2025-08-26 21:01:55', '2025-08-26 21:01:55') *** (2) HOLDS THE LOCK(S): RECORD LOCKS space id 10 page no 20 n bits 160 index PRIMARY of table `lxh_db`.`store_snapshot` trx id 3860 lock_mode X locks gap before rec Record lock, heap no 3 PHYSICAL RECORD: n_fields 9; compact format; info bits 0 0: len 30; hex 336661623363323037333232346465666263363762333630363763623666; asc 3fab3c2073224defbc67b36067cb6f; (total 32 bytes); 1: len 6; hex 000000000f14; asc ;; 2: len 7; hex 82000000932d80; asc - ;; 3: len 11; hex 77617265686f7573655f31; asc warehouse_1;; 4: len 5; hex 99b7755076; asc uPv;; 5: len 6; hex 73797374656d; asc system;; 6: len 5; hex 99b7755076; asc uPv;; 7: len 6; hex 73797374656d; asc system;; 8: len 5; hex 99b7755076; asc uPv;; Record lock, heap no 4 PHYSICAL RECORD: n_fields 9; compact format; info bits 0 0: len 30; hex 336664326234626538643463343338326130303764383431366364613536; asc 3fd2b4be8d4c4382a007d8416cda56; (total 32 bytes); 1: len 6; hex 000000000f14; asc ;; 2: len 7; hex 82000000903800; asc 8 ;; 3: len 11; hex 77617265686f7573655f31; asc warehouse_1;; 4: len 5; hex 99b7755076; asc uPv;; 5: len 6; hex 73797374656d; asc system;; 6: len 5; hex 99b7755076; asc uPv;; 7: len 6; hex 73797374656d; asc system;; 8: len 5; hex 99b7755076; asc uPv;; Record lock, heap no 5 PHYSICAL RECORD: n_fields 9; compact format; info bits 0 0: len 30; hex 343033303963393162373166343731633936323164616565643434666363; asc 40309c91b71f471c9621daeed44fcc; (total 32 bytes); 1: len 6; hex 000000000f14; asc ;; 2: len 7; hex 82000001070630; asc 0;; 3: len 11; hex 77617265686f7573655f31; asc warehouse_1;; 4: len 5; hex 99b7755074; asc uPt;; 5: len 6; hex 73797374656d; asc system;; 6: len 5; hex 99b7755074; asc uPt;; 7: len 6; hex 73797374656d; asc system;; 8: len 5; hex 99b7755074; asc uPt;; Record lock, heap no 93 PHYSICAL RECORD: n_fields 9; compact format; info bits 0 0: len 30; hex 336664396165326435663738346237656161346134323336643031643366; asc 3fd9ae2d5f784b7eaa4a4236d01d3f; (total 32 bytes); 1: len 6; hex 000000000f14; asc ;; 2: len 7; hex 82000000a81784; asc ;; 3: len 11; hex 77617265686f7573655f31; asc warehouse_1;; 4: len 5; hex 99b7755077; asc uPw;; 5: len 6; hex 73797374656d; asc system;; 6: len 5; hex 99b7755077; asc uPw;; 7: len 6; hex 73797374656d; asc system;; 8: len 5; hex 99b7755077; asc uPw;; *** (2) WAITING FOR THIS LOCK TO BE GRANTED: RECORD LOCKS space id 10 page no 11 n bits 240 index PRIMARY of table `lxh_db`.`store_snapshot` trx id 3860 lock_mode X insert intention waiting Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0 0: len 8; hex 73757072656d756d; asc supremum;; *** WE ROLL BACK TRANSACTION (1) ------------ TRANSACTIONS ------------
可以看到,在日志中,事务 3866
持有一个页号为 11
,supremum
(相当于双链表的尾部哑节点) 的间隙锁,在等待页号为 20
,主键为 40309c91b71f471c9621daeed44fcc
的间隙锁;同时,事务 3860
持有页号为 20
,主键为 40309c91b71f471c9621daeed44fcc
的间隙锁,同时在等待页号为 10
的 supremum
的间隙锁。这两个事务构成了循环回路,并且在相互等待,因此形成了死锁,具体的图示如下所示:
具体分析
查询语句的加锁
MySQL
的的一般 SELECT
语句在非串行化隔离级别下是通过一致性读的方式进行读取,本身不会对记录加锁,但是在存在外键约束的情况下,依旧会对关联的外键约束记录上加上 S
型的记录锁,如果关联的外键约束没有被找到,在"可重复读"的隔离级别下,会在外键记录附近加上间隙锁
由于这里插入语句的外键都能被找到,因此这里的外键不是产生间隙锁的原因
INSERT
语句的加锁
单纯的 INSERT
语句在插入时加上的是一种特殊的记录锁,不同事务的插入意向锁不会相互阻塞,但是在插入的记录行的所处位置存在间隙锁的情况下,会为当前的 INSERT
记录加上 插入意向锁
在主键重复的情况下,隔离级别为 "可重复读" 或 "串行化" 的情况下,会为插入的记录加上 S
型的 Next-Key
锁。在这种情况下,如果原来待插入行的事务回滚了,由于本身持有的 S
型锁无法再获取到独占锁,就有可能会引发死锁[2]。
由于这里的主键都是 UUID
,不存在重复主键,并且结合相关的日志信息,并不是由于单纯的 INSERT
语句导致的死锁
Page 的分裂
当插入的记录的主键不连续时,MySQL
为了维护聚簇索引的顺序,可能会引发页的分裂。在事务隔离级别为 "可重复读"或"串行化" 的情况下,对分裂的数据进行迁移的过程中,相当于对数据执行了更新的操作,按照 MySQL
对于 UPDATE
语句的加锁情况[2],会在记录上加上 Next-Key (记录锁和间隙锁),因此事务 3860
会持有记录40309c91b71f471c9621daeed44fcc
的间隙锁;而为了防止在分裂维护过程中重新插入数据,可能不得不为相关页记录的 supremum
加上间隙锁,以维护页分裂的执行过程
这个过程可能如下:
插入记录前:
插入记录导致页分裂后
注意: 这里关于分页而产生的间隙锁为实际实验推断,并无实际文档与之关联。当事务隔离级别为 "读提交" 或插入的记录的主键存在顺序时,都不会出现上文描述的死锁出现
解决方案
实际上,如果事务执行速度特别快,并且在并发量不高的情况下,这种类型的死锁很难被检测到,因为需要处理的事务跨多个页,并且需要关联到两个不同页的锁本身就很难。因此,将逐行的 INSERT
语句替换为批量提交后也可以很大程度上解决这一问题
为了尽可能地避免这一类问题,推荐的一些方案如下:
- 如果没有特殊必要,可以使用隔离级别较低的事务隔离级别,因为这样可以减少实际事务处理过程中锁的数量,降低锁冲突的可能性
- 尽量使用有序的主键,不管是从性能上还是实际业务角度,都没有理由选择
UUID
的理由 - 如果可以,适当减少事务的粒度,如:将一个大事务分成几个小事务,在性能和一致性上做一定的权衡
参考资料:
[1] https://mp.weixin.qq.com/s/9LRFYGquXWpMCeyAonNcMQ
[2] https://dev.mysql.com/doc/refman/8.0/en/innodb-locks-set.html
到此这篇关于MySQL INSERT 导致的死锁分析的文章就介绍到这了,更多相关mysql insert死锁内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!