Mysql

关注公众号 jb51net

关闭
首页 > 数据库 > Mysql > Mysql索引的数据结构

Mysql之索引的数据结构详解

作者:明矾java

索引是存储引擎用于快速找到数据记录的一种数据结构,类似于教科书的目录部分,在MySQL中,索引可以加速数据查找,减少磁盘I/O的次数,提高查询速率,但是,创建和维护索引需要耗费时间,并且索引需要占磁盘空间,在InnoDB中,索引的实现基于B+树结构

为什么要使用索引

索引是存储引擎用于快速找到数据记录的一种数据结构,就好比一本教科书的目录部分,通过目录中找到对应文章的页码,便可快速定位到需要的文章。

MySQL中也是一样的道理,进行数据查找时,首先查看查询条件是否命中某条索引,符合则通过索引查找相关数据,如果不符合则需要全表扫描,即需要一条一条地查找记录,直到找到与条件符合的记录。

如上图所示,数据库没有索引的情况下,数据分布在硬盘不同的位置上面,读取数据时,摆臂需要前后摆动查询数据,这样操作非常消耗时间。

如果数据顺序摆放,那么也需要从1到6行按顺序读取,这样就相当于进行了6次IO操作,依旧非常耗时。

如果我们不借助任何索引结构帮助我们快速定位数据的话,我们查找 Col 2 = 89 这条记录,就要逐行去查找、去比较。

从Col 2 = 34 开始,进行比较,发现不是,继续下一行。我们当前的表只有不到10行数据,但如果表很大的话,有上千万条数据,就意味着要做很多很多次硬盘I/0才能找到

现在要查找 Col 2 = 89 这条记录。CPU必须先去磁盘查找这条记录,找到之后加载到内存,再对数据进行处理。

这个过程最耗时间就是磁盘I/O(涉及到磁盘的旋转时间(速度较快),磁头的寻道时间(速度慢、费时))

假如给数据使用 二叉树 这样的数据结构进行存储,如下图所示:

对字段 Col 2 添加了索引,就相当于在硬盘上为 Col 2 维护了一个索引的数据结构,即这个 二叉搜索树

二叉搜索树的每个结点存储的是 (K, V) 结构,key 是 Col 2,value 是该 key 所在行的文件指针(地址)。

比如:该二叉搜索树的根节点就是:(34, 0x07)。现在对 Col 2 添加了索引,这时再去查找 Col 2 = 89 这条记录的时候会先去查找该二叉搜索树(二叉树的遍历查找)。

读 34 到内存,89 > 34; 继续右侧数据,读 89 到内存,89==89;找到数据返回。找到之后就根据当前结点的 value 快速定位到要查找的记录对应的地址。

我们可以发现,只需要 查找两次 就可以定位到记录的地址,查询速度就提高了。

这就是我们为什么要建索引,目的就是为了 减少磁盘I/O的次数,加快查询速率。

索引及其优缺点

索引概述

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。

索引的本质:索引是数据结构。

你可以简单理解为“排好序的快速查找数据结构”,满足特定查找算法。

这些数据结构以某种方式指向数据, 这样就可以在这些数据结构的基础上实现 高级查找算法

优点

(1)类似大学图书馆建书目索引,提高数据检索的效率,降低 数据库的IO成本 ,这也是创建索引最主 要的原因。

(2)通过创建唯一索引,可以保证数据库表中每一行 数据的唯一性

(3)在实现数据的参考完整性方面,可以 加速表和表之间的连接 。换句话说,对于有依赖关系的子表和父表联合查询时, 可以提高查询速度。

(4)在使用分组和排序子句进行数据查询时,可以显著 减少查询中分组和排序的时间 ,降低了CPU的消耗。

缺点

增加索引也有许多不利的方面,主要表现在如下几个方面:

(1)创建索引和维护索引要 耗费时间 ,并 且随着数据量的增加,所耗费的时间也会增加。

(2)索引需要占 磁盘空间 ,除了数据表占数据空间之外,每一个索引还要占一定的物理空间, 存储在磁盘上 ,如果有大量的索引,索引文件就可能比数据文件更快达到最大文件尺寸。

(3)虽然索引大大提高了查询速度,同时却会 降低更新表的速度 。当对表 中的数据进行增加、删除和修改的时候,索引也要动态地维护,这样就降低了数据的维护速度。 因此,选择使用索引时,需要综合考虑索引的优点和缺点。

InnoDB中索引的推演

索引之前的查找

在一个页中的查找

假设目前表中的记录比较少,所有的记录都可以被存放到一个页中,在查找记录的时候可以根据搜索条件的不同分为两种情况:

以主键为搜索条件

以其他列作为搜索条件

在很多页中查找

在很多页中查找记录的活动可以分为两个步骤:

  1. 定位到记录所在的页:即从整个双向链表的页,遍历到最后的页
  2. 从所在的页内中查找相应的记录:找到对应页之后,再遍历页中的记录。

在没有索引的情况下,不论是根据主键列或者其他列的值进行查找,由于我们并不能快速的定位到记录所在的页,所以只能从第一个页沿着双向链表 一直往下找,在每一个页中根据我们上面的查找方式去查找指定的记录。因为要遍历所有的数据页,所以这种方式显然是超级耗时的。

设计索引

建立表

CREATE TABLE index_demo(
-> c1 INT,
-> c2 INT,
-> c3 CHAR(1),
-> PRIMARY KEY(c1)
-> ) ROW_FORMAT = Compact;

这个新建的 index_demo 表中有2个INT类型的列,1个CHAR(1)类型的列,而且我们规定了c1列为主键, 这个表使用 Compact 行格式来实际存储记录的。

这里我们简化了index_demo表的行格式示意图:

我们只在示意图里展示记录的这几个部分:

将记录格式示意图的其他信息项暂时去掉并把它竖起来的效果就是这样:

把一些记录放到页里的示意图就是:

简单的索引设计方案

我们在根据某个搜索条件查找一些记录时为什么要遍历所有的数据页呢?因为各个页中的记录并没有规律,我们并不知道我们的搜索条件匹配哪些页中的记录,所以不得不依次遍历所有的数据页。所以如果我们 想快速的定位到需要查找的记录在哪些数据页 中该咋办?

我们可以为快速定位记录所在的数据页而建立一个目录 ,建这个目录必须完成下边这些事:

假设:每个数据结构最多能存放3条记录(实际上一个数据页非常大,可以存放下好多记录)。

INSERT INTO index_demo VALUES(1, 4, 'u'), (3, 9, 'd'), (5, 3, 'y');

那么这些记录以及按照主键值的大小串联成一个单向链表了,如图所示:

从图中可以看出来, index_demo 表中的3条记录都被插入到了编号为10的数据页中了。

此时我们再来插入一条记录

INSERT INTO index_demo VALUES(4, 4, 'a');

因为 页10 最多只能放3条记录,所以我们不得不再分配一个新页:

此时新分配的 数据页编号可能并不是连续的。它们只是通过维护者上一个页和下一个页的编号而建立了 链表 关系。另外,页10中用户记录最大的主键值是5,而页28中有一条记录的主键值是4,因为5>4,所以这就不符合下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值的要求,所以在插入主键值为4的记录的时候需要伴随着一次 记录移动,也就是把主键值为5的记录移动到页28中,然后再把主键值为4的记录插入到页10中,这也就是维护索引的过程,这个过程的示意图如下:

这个过程表明了在对页中的记录进行增删改查操作的过程中,我们必须通过一些诸如 记录移动 的操作来始终保证这个状态一直成立:下一个数据页中用户记录的主键值必须大于上一个页中用户记录的主键值。这个过程称为页分裂

给所有的页建立一个目录项。

由于数据页的 编号可能是不连续 的,所以在向 index_demo 表中插入许多条记录后,可能是这样的效果,又要遍历每个页,但每个页中的可以通过二分法来筛选,但也效率低下

我们可以给每个页做个目录,每个页对应一个目录项,每个目录项包括下边两个部分:

1)页的用户记录中最小的主键值,我们用 key 来表示。

2)页号,我们用 page_on 表示。

以 页28 为例,它对应 目录项2 ,这个目录项中包含着该页的页号 28 以及该页中用户记录的最小主 键值 5 。我们只需要把几个目录项在物理存储器上连续存储(比如:数组),就可以实现根据主键 值快速查找某条记录的功能了。

比如:查找主键值为 20 的记录,具体查找过程分两步:

InnoDB中的索引方案迭代1次:目录项纪录的页

InnoDB怎么区分一条记录是普通的 用户记录 还是 目录项记录 呢?使用记录头信息里的 record_type 属性,它的各自取值代表的意思如下:

我们把前边使用到的目录项放到数据页中的样子就是这样:

从图中可以看出来,我们新分配了一个编号为30的页来专门存储目录项记录。这里再次强调 目录项记录 和普通的 用户记录 的不同点:

相同点在于寻找记录时,跟普通页数据是一样的,通过找到记录对应的页目录,再通过页目录找到对应的页,精准查询,减少了磁盘io的消耗。

迭代2次:多个目录项纪录的页

从图中可以看出,我们插入了一条主键值为320的用户记录之后需要两个新的数据页:

由于现在数据页不止一个,也需要遍历页,才能找到对应记录的页目录。

迭代3次:目录项记录页的目录页

如果我们表中的数据非常多则会产生很多存储目录项记录的页,那我们怎么根据主键值快速定位一个存储目录项记录的页呢?

那就为这些存储目录项记录的页再生成一个更高级的目录再套一层娃,就像是一个多级目录一样,大目录里嵌套小目录,小目录里才是实际的数据,所以现在各个页的示意图就是这样子:

如图,我们生成了一个存储更高级目录项的 页33 ,这个页中的两条记录分别代表页30和页32,如果用 户记录的主键值在 [1, 320) 之间,则到页30中查找更详细的目录项记录,如果主键值 不小于320 的 话,就到页32中查找更详细的目录项记录。

我们可以用下边这个图来描述它:

B+Tree

一个B+树的节点其实可以分成好多层,规定最下边的那层,也就是存放我们用户记录的那层为第 0 层, 之后依次往上加。

之前我们做了一个非常极端的假设:存放用户记录的页 最多存放3条记录 ,存放目录项 记录的页 最多存放4条记录 。

其实真实环境中一个页存放的记录数量是非常大的,假设所有存放用户记录 的叶子节点代表的数据页可以存放 100条用户记录 ,所有存放目录项记录的内节点代表的数据页可以存 放 1000条目录项记录 ,那么:

你的表里能存放 100000000000 条记录吗?所以一般情况下,我们用到的 B+树都不会超过4层 ,那我们通过主键值去查找某条记录最多只需要做4个页面内的查找(查找3个目录项页和一个用户记录页),又因为在每个页面内有所谓的 Page Directory (页目录),所以在页面内也可以通过 二分法 实现快速定位记录。

InnoDB的B+树索引的注意事项

根页面位置万年不动

实际上B+树的形成过程是这样的:

这个过程特别注意的是:一个B+树索引的根节点自诞生之日起,便不会再移动。这样只要我们对某个表建议一个索引,那么它的根节点的页号便会被记录到某个地方。然后凡是 InnoDB 存储引擎需要用到这个索引的时候,都会从哪个固定的地方取出根节点的页号,从而来访问这个索引。

内节点中目录项记录的唯一性

我们知道B+树索引的内节点中目录项记录的内容是 索引列 + 页号 的搭配,但是这个搭配对于二级索引来说有点不严谨。

还拿 index_demo 表为例,假设这个表中的数据是这样的:

如果二级索引中目录项记录的内容只是 索引列 + 页号 的搭配的话,那么为 c2 列简历索引后的B+树应该长这样:

如果我们想新插入一行记录,其中 c1c2c3 的值分别是: 91c, 那么在修改这个为 c2 列建立的二级索引对应的 B+ 树时便碰到了个大问题:由于 页3 中存储的目录项记录是由 c2列 + 页号 的值构成的,页3 中的两条目录项记录对应的 c2 列的值都是1,而我们 新插入的这条记录 的 c2 列的值也是 1,那我们这条新插入的记录到底应该放在 页4 中,还是应该放在 页5 中?答案:对不起,懵了

为了让新插入记录找到自己在那个页面,我们需要保证在B+树的同一层页节点的目录项记录除页号这个字段以外是唯一的。所以对于二级索引的内节点的目录项记录的内容实际上是由三个部分构成的:

也就是我们把主键值也添加到二级索引内节点中的目录项记录,这样就能保住 B+ 树每一层节点中各条目录项记录除页号这个字段外是唯一的,所以我们为c2建立二级索引后的示意图实际上应该是这样子的:

这样我们再插入记录(9, 1, 'c') 时,由于 页3 中存储的目录项记录是由 c2列 + 主键 + 页号 的值构成的,可以先把新纪录的 c2 列的值和 页3 中各目录项记录的 c2 列的值作比较,如果 c2 列的值相同的话,可以接着比较主键值,因为B+树同一层中不同目录项记录的 c2列 + 主键的值肯定是不一样的,所以最后肯定能定位唯一的一条目录项记录,在本例中最后确定新纪录应该被插入到 页5 中。

一个页面最少存储 2 条记录

一个B+树只需要很少的层级就可以轻松存储数亿条记录,查询速度相当不错!这是因为B+树本质上就是一个大的多层级目录,每经过一个目录时都会过滤掉许多无效的子目录,直到最后访问到存储真实数据的目录。

那如果一个大的目录中只存放一个子目录是个啥效果呢?那就是目录层级非常非常多,而且最后的那个存放真实数据的目录中只存放一条数据。所以 InnoDB 的一个数据页至少可以存放两条记录即得有两条记录才能形成树的分支

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文