SQL实战之行列互转
作者:Luckyforever%-
本文介绍了在Hive中进行行转列的几种方法,包括使用CASE WHEN/IF、Get_Json_Object、Str_To_Map以及UNION ALL和EXPLODE函数,每种方法都有其适用场景,感兴趣的可以了解一下
一. 行转列
Hive中某表存放用户不同科目考试成绩,多行存放,看起来不美观,想要在一行中展示用户所有科目成绩,数据如下:
有多种方式,我将一一列举:
1.1 CASE WHEN/IF
最常见的就是 CASE WHEN 了,不过为了代码简洁我们使用 IF 函数,代码如下:
select uid , max(if(subject = 'chn', score, null)) as chn , max(if(subject = 'eng', score, null)) as eng , max(if(subject = 'math', score, null)) as math from (values (1, 'math', 87), (1, 'chn', 98), (1, 'eng', 85)) as t (uid, subject, score) group by uid;
1.2 Get_Json_Object
可以将用户的所有成绩先聚合成一个大Json字符串,然后使用 get_json_onject 获取Json中相应字段即可,代码如下:
select t1.uid , get_json_object(t1.st, '$.chn') as chn , get_json_object(t1.st, '$.eng') as eng , get_json_object(t1.st, '$.math') as math from ( select uid , concat('{', concat_ws(',', collect_set(concat('"', subject, '"', ':', '"', score, '"'))), '}') as st from (values (1, 'math', 87), (1, 'chn', 98), (1, 'eng', 85)) as t (uid, subject, score) group by uid ) t1;
1.3 Str_To_Map
还可以将用户的成绩生成一个 map,通过 map['field'] 的方式获取字段数值,代码如下:
select t1.uid , t1.st['chn'] as chn , t1.st['eng'] as eng , t1.st['math'] as math from ( select uid , str_to_map(concat_ws(';', collect_set(concat_ws(':', subject, score))), ';', ':') as st from (values (1, 'math', 87), (1, 'chn', 98), (1, 'eng', 85)) as t (uid, subject, score) group by uid ) t1;
1.4 总结
以上就是3种行转列的方法,还有一种是生成 struct 结构的方式,在次我就不赘述了,实用性当然是第1种方便了,其他2种可以适当装个13。
二. 行转列
数据如下:
2.1 UNION ALL
union all 是常用方法,代码如下:
select name, '语文' as subject, chinese as grade from values ('张三', 74, 83, 93), ('李四', 74, 84, 94) as t (name, chinese, math, pyhsic) union all select name, '数学' as subject, math as grade from values ('张三', 74, 83, 93), ('李四', 74, 84, 94) as t (name, chinese, math, pyhsic) union all select name, '物理' as subject, pyhsic as grade from values ('张三', 74, 83, 93), ('李四', 74, 84, 94) as t (name, chinese, math, pyhsic);
2.2 EXPLODE
先将数据生成 map ,然后再用 explode 函数炸开它,代码如下:
select t1.name, subject, grade from ( select name , str_to_map(concat('语文', ':', chinese, ';', '数学', ':', math, ';', '物理', ':', pyhsic), ';', ':') as lit from values ('张三', 74, 83, 93), ('李四', 74, 84, 94) as t (name, chinese, math, pyhsic)) t1 lateral view explode(t1.lit) tmp as subject, grade;
2.3 总结
以上就是我介绍的2种列转行方式,建议大家使用第1种方式,主打一个快捷省事。
到此这篇关于SQL实战之行列互转的文章就介绍到这了,更多相关SQL 行列互转内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!