MySQL中Join的算法(NLJ、BNL、BKA)详解
作者:码农BookSea
什么是Join
在MySQL中,Join是一种用于组合两个或多个表中数据的查询操作。
Join操作通常基于两个表中的某些共同的列进行,这些列在两个表中都存在。
MySQL支持多种类型的Join操作,如Inner Join、Left Join、Right Join、Full Join等。
Inner Join是最常见的Join类型之一。在Inner Join操作中,只有在两个表中都存在的行才会被返回。
例如,如果我们有一个“customers”表和一个“orders”表,我们可以通过在这两个表中共享“customer_id”列来组合它们的数据。
SELECT * FROM customers INNER JOIN orders ON customers.customer_id = orders.customer_id;
上面的查询将返回所有存在于“customers”和“orders”表中的“customer_id”列相同的行。
Index Nested-Loop Join
Index Nested-Loop Join(NLJ)算法是Join算法中最基本的算法之一。在NLJ算法中,MySQL首先选择一个表(通常是小型表)作为驱动表,并迭代该表中的每一行。然后,MySQL在第二个表中搜索匹配条件的行,这个搜索过程通常使用索引来完成。一旦找到匹配的行,MySQL将这些行组合在一起,并将它们作为结果集返回。
工作流程如图:
例如,下面这个语句:
select * from t1 straight_join t2 on (t1.a=t2.a);
在这个语句里,假设t1 是驱动表,t2是被驱动表。我们来看一下这条语句的explain结果。
可以看到,在这条语句里,被驱动表t2的字段a上有索引,join过程用上了这个索引,因此这个语句的执行流程是这样的:
- 从表t1中读入一行数据 R;
- 从数据行R中,取出a字段到表t2里去查找;
- 取出表t2中满足条件的行,跟R组成一行,作为结果集的一部分;
- 重复执行步骤1到3,直到表t1的末尾循环结束。
这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为**“Index Nested-Loop Join”,简称NLJ**。
NLJ是使用上了索引的情况,如果查询条件没有使用到索引呢?
MySQL会选择使用另一个叫作**“Block Nested-Loop Join”的算法,简称BNL**。
Block Nested-Loop Join
Block Nested Loop Join(BNL)算法与NLJ算法不同的是,BNL算法使用一个类似于缓存的机制,将表数据分成多个块,然后逐个处理这些块,以减少内存和CPU的消耗。
例如,下面这个语句:
select * from t1 straight_join t2 on (t1.a=t2.b);
字段b上是没有建立索引的。
这时候,被驱动表上没有可用的索引,算法的流程是这样的:
把表t1的数据读入线程内存join_buffer中,由于我们这个语句中写的是select *,因此是把整个表t1放入了内存;扫描表t2,把表t2中的每一行取出来,跟join_buffer中的数据做对比,满足join条件的,作为结果集的一部分返回。
这条SQL语句的explain结果如下所示:
可以看到,在这个过程中,对表t1和t2都做了一次全表扫描,因此总的扫描行数是1100。由于join_buffer是以无序数组的方式组织的,因此对表t2中的每一行,都要做100次判断,总共需要在内存中做的判断次数是:100*1000=10万次。
虽然Block Nested-Loop Join算法是全表扫描。但是是在内存中进行的判断操作,速度上会快很多。但是性能仍然不如NLJ。
join_buffer的大小是由参数join_buffer_size设定的,默认值是256k。如果放不下表t1的所有数据话,策略很简单,就是分段放。
- 顺序读取数据行放入join_buffer中,直到join_buffer满了。
- 扫描被驱动表跟join_buffer中的数据做对比,满足join条件的,作为结果集的一部分返回。
- 清空join_buffer,重复上述步骤。
虽然分成多次放入join_buffer,但是判断等值条件的次数还是不变的,依然是10万次。
MRR & BKA
上篇文章里我们讲到了MRR(Multi-Range Read)。MySQL在5.6版本后引入了Batched Key Acess(BKA)算法了。这个BKA算法,其实就是对NLJ算法的优化,BKA算法正是基于MRR。
NLJ算法执行的逻辑是:从驱动表t1,一行行地取出a的值,再到被驱动表t2去做join。也就是说,对于表t2来说,每次都是匹配一个值。这时,MRR的优势就用不上了。
我们可以从表t1里一次性地多拿些行出来,,先放到一个临时内存,一起传给表t2。这个临时内存不是别人,就是join_buffer。
通过上一篇文章,我们知道join_buffer 在BNL算法里的作用,是暂存驱动表的数据。但是在NLJ算法里并没有用。那么,我们刚好就可以复用join_buffer到BKA算法中。
NLJ算法优化后的BKA算法的流程,如图所示:
图中,我在join_buffer中放入的数据是P1~P100,表示的是只会取查询需要的字段。当然,如果join buffer放不下P1~P100的所有数据,就会把这100行数据分成多段执行上图的流程。
如果要使用BKA优化算法的话,你需要在执行SQL语句之前,先设置
set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';
其中,前两个参数的作用是要启用MRR。这么做的原因是,BKA算法的优化要依赖于MRR。
对于BNL,我们可以通过建立索引转为BKA。对于一些列建立索引代价太大,不好建立索引的情况,我们可以使用临时表去优化。
例如,对于这个语句:
select * from t1 join t2 on (t1.b=t2.b) where t2.b>=1 and t2.b<=2000;
使用临时表的大致思路是:
把表t2中满足条件的数据放在临时表tmp_t中;为了让join使用BKA算法,给临时表tmp_t的字段b加上索引;让表t1和tmp_t做join操作。
这样可以大大减少扫描的行数,提升性能。
总结
在MySQL中,不管Join使用的是NLJ还是BNL总是应该使用小表做驱动表。更准确地说,**在决定哪个表做驱动表的时候,应该是两个表按照各自的条件过滤,过滤完成之后,计算参与join的各个字段的总数据量,数据量小的那个表,就是“小表”,应该作为驱动表。**应当尽量避免使用BNL算法,如果确认优化器会使用BNL算法,就需要做优化。优化的常见做法是,给被驱动表的join字段加上索引,把BNL算法转成BKA算法。对于不好在索引的情况,可以基于临时表的改进方案,提前过滤出小数据添加索引。
到此这篇关于MySQL中Join的算法(NLJ、BNL、BKA)详解的文章就介绍到这了,更多相关MySQL中Join的算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!