数据库其它

关注公众号 jb51net

关闭
首页 > 数据库 > 数据库其它 > Doris实时多维分析

Doris实时多维分析的解决方案详解

作者:迹_Jason

这篇文章主要为大家介绍了Doris实时多维分析的解决方案详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

正文

Doris 这类 MPP 架构的 OLAP 数据库,通常都是通过提高并发,来处理大量数据的。本质上,Doris 的数据存储在类似 SSTable(Sorted String Table)的数据结构中。该结构是一种有序的数据结构,可以按照指定的列进行排序存储。在这种数据结构上,以排序列作为条件进行查找,会非常的高效。

限制

数据存储结构

在 Doris 中,数据以表(Table)的形式进行逻辑上的描述。一张表包括行(Row)和列(Column)。Row 即用户的一行数据。Column 用于描述一行数据中不同的字段。

Column 可以分为两大类:Key 和 Value。从业务角度看,Key 和 Value 可以分别对应维度列和指标列。

Doris 的数据模型主要分为3类:

Aggregate 模型

在 Doris 通过 key 来来决定 value 的聚合粒度大小。

CREATE TABLE IF NOT EXISTS example_db.expamle_tbl
(
    `user_id` LARGEINT NOT NULL COMMENT "用户id",
    `date` DATE NOT NULL COMMENT "数据灌入日期时间",
    `city` VARCHAR(20) COMMENT "用户所在城市",
    `age` SMALLINT COMMENT "用户年龄",
    `sex` TINYINT COMMENT "用户性别",
    `last_visit_date` DATETIME REPLACE DEFAULT "1970-01-01 00:00:00" COMMENT "用户最后一次访问时间",
    `cost` BIGINT SUM DEFAULT "0" COMMENT "用户总消费",
    `max_dwell_time` INT MAX DEFAULT "0" COMMENT "用户最大停留时间",
    `min_dwell_time` INT MIN DEFAULT "99999" COMMENT "用户最小停留时间",
)
AGGREGATE KEY(`user_id`, `date`, `timestamp`, `city`, `age`, `sex`)
... /* 省略 Partition 和 Distribution 信息 */
;

像带有 REPLACE、SUM、MAX、MIN 这种标记的字段都是属于 value,user_iddatetimestampcityagesex 则为key。

Uniq模型

这类数据没有聚合需求,只需保证主键唯一性。

CREATE TABLE IF NOT EXISTS example_db.expamle_tbl
(
    `user_id` LARGEINT NOT NULL COMMENT "用户id",
    `username` VARCHAR(50) NOT NULL COMMENT "用户昵称",
    `city` VARCHAR(20) COMMENT "用户所在城市",
    `age` SMALLINT COMMENT "用户年龄",
    `sex` TINYINT COMMENT "用户性别",
    `phone` LARGEINT COMMENT "用户电话",
    `address` VARCHAR(500) COMMENT "用户地址",
    `register_time` DATETIME COMMENT "用户注册时间"
)
UNIQUE KEY(`user_id`, `user_name`)
... /* 省略 Partition 和 Distribution 信息 */
;

Duplicate 模型

在某些多维分析场景下,数据既没有主键,也没有聚合需求。因此,我们引入 Duplicate 数据模型来满足这类需求。

这种数据模型区别于 Aggregate 和 Uniq 模型。数据完全按照导入文件中的数据进行存储,不会有任何聚合。即使两行数据完全相同,也都会保留。 而在建表语句中指定的 DUPLICATE KEY,只是用来指明底层数据按照那些列进行排序

在 DUPLICATE KEY 的选择上,我们建议适当的选择前 2-4 列就可以。

CREATE TABLE IF NOT EXISTS example_db.expamle_tbl
(
    `timestamp` DATETIME NOT NULL COMMENT "日志时间",
    `type` INT NOT NULL COMMENT "日志类型",
    `error_code` INT COMMENT "错误码",
    `error_msg` VARCHAR(1024) COMMENT "错误详细信息",
    `op_id` BIGINT COMMENT "负责人id",
    `op_time` DATETIME COMMENT "处理时间"
)
DUPLICATE KEY(`timestamp`, `type`)
... /* 省略 Partition 和 Distribution 信息 */
;

数据模型的选择建议

因为数据模型在建表时就已经确定,且无法修改。所以,选择一个合适的数据模型非常重要

前缀索引

在 Aggregate、Uniq 和 Duplicate 三种数据模型中。底层的数据存储,是按照各自建表语句中,AGGREGATE KEY、UNIQ KEY 和 DUPLICATE KEY 中指定的列进行排序存储的。

而前缀索引,即在排序的基础上,实现的一种根据给定前缀列,快速查询数据的索引方式。

我们将一行数据的前 36 个字节 作为这行数据的前缀索引。当遇到 VARCHAR 类型时,前缀索引会直接截断。我们举例说明:

ColumnNameType
user_idBIGINT
ageINT
messageVARCHAR(100)
max_dwell_timeDATETIME
min_dwell_timeDATETIME
ColumnNameType
user_nameVARCHAR(20)
ageINT
messageVARCHAR(100)
max_dwell_timeDATETIME
min_dwell_timeDATETIME

当我们的查询条件,是前缀索引的前缀时,可以极大的加快查询速度。比如在第一个例子中,我们执行如下查询:

SELECT * FROM table WHERE user_id=1829239 and age=20;

该查询的效率会远高于如下查询:

SELECT * FROM table WHERE age=20;

所以在建表时,正确的选择列顺序,能够极大地提高查询效率

物化视图(rollup)

ROLLUP 在多维分析中是“上卷”的意思,即将数据按某种指定的粒度进行进一步聚合。

在 Doris 中,我们将用户通过建表语句创建出来的表成为 Base 表(Base Table)。Base 表中保存着按用户建表语句指定的方式存储的基础数据。

在 Base 表之上,我们可以创建任意多个 ROLLUP 表。这些 ROLLUP 的数据是基于 Base 表产生的,并且在物理上是独立存储的。

ROLLUP 表的基本作用,在于在 Base 表的基础上,获得更粗粒度的聚合数据

Rollup 本质上可以理解为原始表(Base Table)的一个物化索引。建立 Rollup 时可只选取 Base Table 中的部分列作为 Schema。Schema 中的字段顺序也可与 Base Table 不同。

ROLLUP 创建完成之后的触发是程序自动的,不需要任何其他指定或者配置。

例如:创建了 user_id (key),cost(value)格式的 rollup 时,当执行下方语句时,就会触发。

SELECT user_id, sum(cost) FROM table GROUP BY user_id;

 Aggregate 和 Uniq 两种数据存储格式时,使用 rollup 会改变聚合数据的粒度,但对于 Duplicate 只是调整前缀索引。

因为建表时已经指定了列顺序,所以一个表只有一种前缀索引。这对于使用其他不能命中前缀索引的列作为条件进行的查询来说,效率上可能无法满足需求。因此,我们可以通过创建 ROLLUP 来人为的调整列顺序。举例说明。

Base 表结构如下:

ColumnNameType
user_idBIGINT
ageINT
messageVARCHAR(100)
max_dwell_timeDATETIME
min_dwell_timeDATETIME

我们可以在此基础上创建一个 ROLLUP 表:

ColumnNameType
ageINT
user_idBIGINT
messageVARCHAR(100)
max_dwell_timeDATETIME
min_dwell_timeDATETIME

可以看到,ROLLUP 和 Base 表的列完全一样,只是将 user_id 和 age 的顺序调换了。那么当我们进行如下查询时:

SELECT * FROM table where age=20 and massage LIKE "%error%";

会优先选择 ROLLUP 表,因为 ROLLUP 的前缀索引匹配度更高。

创建 rollup 语法

ALTER TABLE table1 ADD ROLLUP rollup_city(citycode, pv);
# 取消正在执行的作业
CANCEL ALTER TABLE ROLLUP FROM table1;

ROLLUP 调整前缀索引

因为建表时已经指定了列顺序,所以一个表只有一种前缀索引。这对于使用其他不能命中前缀索引的列作为条件进行的查询来说,效率上可能无法满足需求。因此,我们可以通过创建 ROLLUP 来人为的调整列顺序。

ROLLUP 的几点说明

rollup 数量没有限制,但数量越多会消耗比较多的内存。支持 SQL 方式变更 rollup 字段数量。

分区和分桶

Doris 支持两级分区存储, 第一层为 RANGE 分区(partition), 第二层为 HASH 分桶(bucket)。

1.3.1. RANGE分区(partition)

RANGE分区用于将数据划分成不同区间, 逻辑上可以理解为将原始表划分成了多个子表。业务上,多数用户会选择采用按时间进行partition, 让

时间进行partition有以下好处:

* 可区分冷热数据

* 可用上Doris分级存储(SSD + SATA)的功能

* 按分区删除数据时,更加迅速

1.3.2. HASH分桶(bucket)

根据hash值将数据划分成不同的 bucket。

* 建议采用区分度大的列做分桶, 避免出现数据倾斜

* 为方便数据恢复, 建议单个 bucket 的 size 不要太大, 保持在 10GB 以内, 所以建表或增加 partition 时请合理考虑 bucket 数目, 其中不同 partition 可指定不同的 buckets 数。

稀疏索引和 Bloom Filter

Doris对数据进行有序存储, 在数据有序的基础上为其建立稀疏索引,索引粒度为 block(1024行)。

稀疏索引选取 schema 中固定长度的前缀作为索引内容, 目前 Doris 选取 36 个字节的前缀作为索引。

Broadcast/Shuffle Join

系统默认实现 Join 的方式,是将小表进行条件过滤后,将其广播到大表所在的各个节点上,形成一个内存 Hash 表,然后流式读出大表的数据进行Hash Join。但是如果当小表过滤后的数据量无法放入内存的话,此时 Join 将无法完成,通常的报错应该是首先造成内存超限。

如果遇到上述情况,建议使用 Shuffle Join 的方式,也被称作 Partitioned Join。即将小表和大表都按照 Join 的 key 进行 Hash,然后进行分布式的 Join。这个对内存的消耗就会分摊到集群的所有计算节点上

问题

支持,但数据模式一旦表创建就无法变更。

不存在,但越多的 rollup 内存资源会消耗更多,同时,导入数据会比较慢。

支持,但要有顺序要求。

总结

Doris 表结构由 key 和 value 构成,key 为维度,value 为统计指标。适合做简单的聚合计算和维度计算,使用比较低的硬件条件拥有比较高的性能。

Doris 官方还推出了 Docker 的 Dev 版本进行特性试用。https://hub.docker.com/r/apac...

以上就是Doris实时多维分析的解决方案详解的详细内容,更多关于Doris实时多维分析的资料请关注脚本之家其它相关文章!

您可能感兴趣的文章:
阅读全文