java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Java模拟栈和队列

Java模拟栈和队列数据结构的基本示例讲解

作者:匆忙拥挤repeat

这篇文章主要介绍了Java模拟栈和队列数据结构的基本示例,栈的后进先出和队列的先进先出是数据结构中最基础的知识,本文则又对Java实现栈和队列结构的方法进行了细分,需要的朋友可以参考下

栈和队列:
一般是作为程序员的工具,用于辅助构思算法,生命周期较短,运行时才被创建;
访问受限,在特定时刻,只有一个数据可被读取或删除;
是一种抽象的结构,内部的实现机制,对用户不可见,比如用数组、链表来实现栈。

模拟栈结构
同时,只允许一个数据被访问,后进先出
对于入栈和出栈的时间复杂度都为O(1),即不依赖栈内数据项的个数,操作比较快
例,使用数组作为栈的存储结构

public class StackS<T> { 
  private int max; 
  private T[] ary; 
  private int top;  //指针,指向栈顶元素的下标 
   
  public StackS(int size) { 
    this.max = size; 
    ary = (T[]) new Object[max]; 
    top = -1; 
  } 
   
  // 入栈 
  public void push(T data) { 
    if (!isFull()) 
      ary[++top] = data; 
  } 
   
  // 出栈 
  public T pop() { 
    if (isEmpty()) { 
      return null; 
    } 
    return ary[top--]; 
  } 
   
  // 查看栈顶 
  public T peek() { 
    return ary[top]; 
  } 
   
  //栈是否为空 
  public boolean isEmpty() { 
    return top == -1; 
  } 
   
  //栈是否满 
  public boolean isFull() { 
    return top == max - 1; 
  } 
   
  //size 
  public int size() { 
    return top + 1; 
  } 
   
  public static void main(String[] args) { 
    StackS<Integer> stack = new StackS<Integer>(3); 
    for (int i = 0; i < 5; i++) { 
      stack.push(i); 
      System.out.println("size:" + stack.size()); 
    } 
    for (int i = 0; i < 5; i++) { 
      Integer peek = stack.peek(); 
      System.out.println("peek:" + peek); 
      System.out.println("size:" + stack.size()); 
    } 
    for (int i = 0; i < 5; i++) { 
      Integer pop = stack.pop(); 
      System.out.println("pop:" + pop); 
      System.out.println("size:" + stack.size()); 
    } 
     
    System.out.println("----"); 
     
    for (int i = 5; i > 0; i--) { 
      stack.push(i); 
      System.out.println("size:" + stack.size()); 
    } 
    for (int i = 5; i > 0; i--) { 
      Integer peek = stack.peek(); 
      System.out.println("peek:" + peek); 
      System.out.println("size:" + stack.size()); 
    } 
    for (int i = 5; i > 0; i--) { 
      Integer pop = stack.pop(); 
      System.out.println("pop:" + pop); 
      System.out.println("size:" + stack.size()); 
    } 
  } 
} 

上面的例子,有一个maxSize的规定,因为数组是要规定大小的,若想无限制,可以使用其他结构来做存储,当然也可以new一个新的长度的数组。
例,使用LinkedList存储来实现栈

public class StackSS<T> { 
  private LinkedList<T> datas; 
   
  public StackSS() { 
    datas = new LinkedList<T>(); 
  } 
   
  // 入栈 
  public void push(T data) { 
    datas.addLast(data); 
  } 
   
  // 出栈 
  public T pop() { 
    return datas.removeLast(); 
  } 
   
  // 查看栈顶 
  public T peek() { 
    return datas.getLast(); 
  } 
   
  //栈是否为空 
  public boolean isEmpty() { 
    return datas.isEmpty(); 
  } 
   
  //size 
  public int size() { 
    return datas.size(); 
  } 
   
  public static void main(String[] args) { 
    StackS<Integer> stack = new StackS<Integer>(3); 
    for (int i = 0; i < 5; i++) { 
      stack.push(i); 
      System.out.println("size:" + stack.size()); 
    } 
    for (int i = 0; i < 5; i++) { 
      Integer peek = stack.peek(); 
      System.out.println("peek:" + peek); 
      System.out.println("size:" + stack.size()); 
    } 
    for (int i = 0; i < 5; i++) { 
      Integer pop = stack.pop(); 
      System.out.println("pop:" + pop); 
      System.out.println("size:" + stack.size()); 
    } 
     
    System.out.println("----"); 
    for (int i = 5; i > 0; i--) { 
      stack.push(i); 
      System.out.println("size:" + stack.size()); 
    } 
    for (int i = 5; i > 0; i--) { 
      Integer peek = stack.peek(); 
      System.out.println("peek:" + peek); 
      System.out.println("size:" + stack.size()); 
    } 
    for (int i = 5; i > 0; i--) { 
      Integer pop = stack.pop(); 
      System.out.println("pop:" + pop); 
      System.out.println("size:" + stack.size()); 
    } 
  } 
} 

例,单词逆序,使用Statck结构

public class WordReverse { 
   
  public static void main(String[] args) { 
    reverse("株式会社"); 
  } 
   
  static void reverse(String word) { 
    if (word == null) return; 
    StackSS<Character> stack = new StackSS<Character>(); 
    char[] charArray = word.toCharArray(); 
    int len = charArray.length; 
    for (int i = 0; i <len; i++ ) { 
      stack.push(charArray[i]); 
    } 
    StringBuilder sb = new StringBuilder(); 
    while (!stack.isEmpty()) { 
      sb.append(stack.pop()); 
    } 
    System.out.println("反转后:" + sb.toString()); 
  } 
} 

打印:

反转后:社会式株 


模拟队列(一般队列、双端队列、优先级队列)
队列:
先进先出,处理类似排队的问题,先排的,先处理,后排的等前面的处理完了,再处理
对于插入和移除操作的时间复杂度都为O(1),从后面插入,从前面移除
双端队列:
即在队列两端都可以insert和remove:insertLeft、insertRight,removeLeft、removeRight
含有栈和队列的功能,如去掉insertLeft、removeLeft,那就跟栈一样了;如去掉insertLeft、removeRight,那就跟队列一样了
一般使用频率较低,时间复杂度 O(1)
优先级队列:
内部维护一个按优先级排序的序列。插入时需要比较查找插入的位置,时间复杂度O(N), 删除O(1)
 

/* 
 * 队列  先进先出,一个指针指示插入的位置,一个指针指示取出数据项的位置 
 */ 
public class QueueQ<T> { 
  private int max; 
  private T[] ary; 
  private int front; //队头指针 指示取出数据项的位置 
  private int rear; //队尾指针 指示插入的位置 
  private int nItems; //实际数据项个数 
   
  public QueueQ(int size) { 
    this.max = size; 
    ary = (T[]) new Object[max]; 
    front = 0; 
    rear = -1; 
    nItems = 0; 
  } 
  //插入队尾 
  public void insert(T t) { 
    if (rear == max - 1) {//已到实际队尾,从头开始 
      rear = -1; 
    } 
    ary[++rear] = t; 
    nItems++; 
  } 
  //移除队头 
  public T remove() { 
    T temp = ary[front++]; 
    if (front == max) {//列队到尾了,从头开始 
      front = 0; 
    } 
    nItems--; 
    return temp; 
  } 
  //查看队头 
  public T peek() { 
    return ary[front]; 
  } 
   
  public boolean isEmpty() { 
    return nItems == 0; 
  } 
   
  public boolean isFull() { 
    return nItems == max; 
  } 
   
  public int size() { 
    return nItems; 
  } 
   
  public static void main(String[] args) { 
    QueueQ<Integer> queue = new QueueQ<Integer>(3); 
    for (int i = 0; i < 5; i++) { 
      queue.insert(i); 
      System.out.println("size:" + queue.size()); 
    } 
    for (int i = 0; i < 5; i++) { 
      Integer peek = queue.peek(); 
      System.out.println("peek:" + peek); 
      System.out.println("size:" + queue.size()); 
    } 
    for (int i = 0; i < 5; i++) { 
      Integer remove = queue.remove(); 
      System.out.println("remove:" + remove); 
      System.out.println("size:" + queue.size()); 
    } 
     
    System.out.println("----"); 
     
    for (int i = 5; i > 0; i--) { 
      queue.insert(i); 
      System.out.println("size:" + queue.size()); 
    } 
    for (int i = 5; i > 0; i--) { 
      Integer peek = queue.peek(); 
      System.out.println("peek:" + peek); 
      System.out.println("size:" + queue.size()); 
    } 
    for (int i = 5; i > 0; i--) { 
      Integer remove = queue.remove(); 
      System.out.println("remove:" + remove); 
      System.out.println("size:" + queue.size()); 
    } 
  } 
   
} 
/* 
 * 双端队列<span style="white-space:pre"> </span>两端插入、删除 
 */ 
public class QueueQT<T> { 
  private LinkedList<T> list; 
 
  public QueueQT() { 
    list = new LinkedList<T>(); 
  } 
 
  // 插入队头 
  public void insertLeft(T t) { 
    list.addFirst(t); 
  } 
 
  // 插入队尾 
  public void insertRight(T t) { 
    list.addLast(t); 
  } 
 
  // 移除队头 
  public T removeLeft() { 
    return list.removeFirst(); 
  } 
 
  // 移除队尾 
  public T removeRight() { 
    return list.removeLast(); 
  } 
 
  // 查看队头 
  public T peekLeft() { 
    return list.getFirst(); 
  } 
 
  // 查看队尾 
  public T peekRight() { 
    return list.getLast(); 
  } 
 
  public boolean isEmpty() { 
    return list.isEmpty(); 
  } 
 
  public int size() { 
    return list.size(); 
  } 
 
} 

/* 
 * 优先级队列  队列中按优先级排序,是一个有序的队列 
 */ 
public class QueueQP { 
  private int max; 
  private int[] ary; 
  private int nItems; //实际数据项个数 
   
  public QueueQP(int size) { 
    this.max = size; 
    ary = new int[max]; 
    nItems = 0; 
  } 
  //插入队尾 
  public void insert(int t) { 
    int j; 
    if (nItems == 0) { 
      ary[nItems++] = t; 
    } else { 
      for (j = nItems - 1; j >= 0; j--) { 
        if (t > ary[j]) { 
          ary[j + 1] = ary[j]; //前一个赋给后一个 小的在后    相当于用了插入排序,给定序列本来就是有序的,所以效率O(N) 
        } else { 
          break; 
        } 
      } 
      ary[j + 1] = t; 
      nItems++; 
    } 
    System.out.println(Arrays.toString(ary)); 
  } 
  //移除队头 
  public int remove() { 
    return ary[--nItems]; //移除优先级小的 
  } 
  //查看队尾 优先级最低的 
  public int peekMin() { 
    return ary[nItems - 1]; 
  } 
   
  public boolean isEmpty() { 
    return nItems == 0; 
  } 
   
  public boolean isFull() { 
    return nItems == max; 
  } 
   
  public int size() { 
    return nItems; 
  } 
   
  public static void main(String[] args) { 
    QueueQP queue = new QueueQP(3); 
    queue.insert(1); 
    queue.insert(2); 
    queue.insert(3); 
    int remove = queue.remove(); 
    System.out.println("remove:" + remove); 
     
  } 
   
} 


您可能感兴趣的文章:
阅读全文