7种排序算法的实现示例
作者:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
void BubbleSort1 (int n, int *array) /*little > big*/
{
int i, j;
for (i=0; i<n-1; i++)
{
for (j=n-1; j>i; j--)
{
if (array[j] < array[j-1])
{
int temp = array[j];
array[j] = array[j-1];
array[j-1] = temp;
}
}
}
}
void BubbleSort2 (int n, int *array)
{
int i, j, flag=1; /*flag=1表示需要继续冒泡*/
for (i=0; i<n-1 && flag; i++)
{
flag = 0;
for (j=n-1; j>i; j--)
{
if (array[j] < array[j-1])
{
int temp = array[j];
array[j] = array[j-1];
array[j-1] = temp;
flag = 1;
}
}
}
}
void SelectSort (int n, int *array)
{
int i, j, min;
for (i=0; i<n-1; i++)
{
min = i;
for (j=i+1; j<n; j++)
{
if (array[min] > array[j])
min = j;
}
int temp = array[min];
array[min] = array[i];
array[i] = temp;
}
}
void InsertSort (int n, int*array)
{
int i, j;
for (i=1; i<n; i++)
{
if (array[i] < array[i-1]) /*是否需要插入*/
{
int key = array[i]; //哨兵
for (j = i-1;j>=0 && array[j] > key; j--)
{
array[j+1] = array[j];
}
/*循环结束时array[j]<=key,将key插入到j+1处*/
array[j+1] = key;
}
}
}
/*分组插入排序*/
void ShellSort (int n, int *array)
{
int i, j;
int increment;
for (increment=n/2; increment > 0; increment /= 2)
{
for (i=0; i<increment; i++) /*下面对一组序列进行插入排序*/
{
for (j=i+increment; j<n; j+=increment)
{
if (array[j] < array[j-increment])
{
int key = array[j];
int k;
for (k=j-increment; k>=0 && array[k]>key; k -= increment)
{
array[k+increment] = array[k];
}
array[k+increment] = key;
}
}
}
}
}
/*分治法*/
void QuickSort (int left, int right, int *array)
{
if(left>=right)
return ;
int i=left, j=right;
int key=array[i];
while (i<j)
{
while (i<j && array[j]>=key)
j--;
array[i] = array[j];
while (i<j && array[i]<=key)
i++;
array[j] = array[i];
}
array[i] = key;
QuickSort(left, i-1, array);
QuickSort(i+1, right, array);
}
/*array[start+1] ~ array[end]已经满足堆的定义,调整使得array[start] ~ array[end]满足堆定义*/
void HeapAdjust (int start, int end, int array[])
{
int i;
int temp = array[start]; /*产生第一个空白*/
for (i=2*start+1; i<=end; i=2*i+1) /*每次循环时空白节点为array[(i-1)/2]*/
{
if (i<end && array[i] < array[i+1]) /*在左右孩子中寻找较大值*/
i++;
if (array[i] > temp)
array[(i-1)/2] = array[i];
else
break;
}
array[(i-1)/2] = temp; /*插入原来的temp到空白处*/
}
void HeapSort (int n, int array[])
{
int i;
for (i=(n-2)/2; i>=0; i--) /*构造大顶堆*/
HeapAdjust(i, n-1, array);
for (i=n-1; i>0; i--)
{
int t = array[i]; /*将根节点交换到数组末端*/
array[i] = array[0];
array[0] = t;
HeapAdjust(0, i-1, array); /*重新调整堆*/
}
}
/*array[s…m]和array[m+1…t]均已各自有序,合并使得array[s…t]有序*/
void Merge(int s, int m, int t, int *array)
{
int temp[t-s+1];
int i=s, j=m+1, k=0;
while(i<=m && j<=t)
{
if(array[i] < array[j])
temp[k++] = array[i++];
else
temp[k++] = array[j++];
}
while(i<=m)
temp[k++] = array[i++];
while(j<=t)
temp[k++] = array[j++];
for(i=s, k=0; i<=t && k<=t-s; i++, k++)
{
array[i] = temp[k];
}
}
void MSort (int s, int t, int *array) /*递归调用*/
{
if(s == t)
return ;
int m = (s+t)/2;
MSort(s, m, array);
MSort(m+1, t, array);
Merge(s, m, t, array);
}
void MergeSort1(int n, int *array)
{
MSort(0, n-1, array);
}
void MergeSort2(int n, int *array) /*非递归实现归并排序*/
{
int k, i;
for (k=1; 2*k<n; k *= 2) /*设置每段待归并的有序序列的长度:1,2,4,8,16……*/
{
for (i=0; i+k-1<n; i += 2*k) /*考虑待归并的左右两段序列,[i+k-1]是左序列末尾元素下标*/
{ /*[end=i+2*k-1]是右序列末尾元素下标,end不应该超过n-1*/
int end=i+2*k-1;
if(end > n-1)
end = n-1;
Merge(i, i+k-1, end, array);
}
}
}
int main()
{
long start, stop;
int n;
printf("下面比较几个时间复杂度为NlogN的排序算法效率高低,其他3个低效率的排序就不考虑了\n");
printf("输入待排序数量(int类型表示,在我的机器上超过100万就可能溢出):\n");
scanf("%d", &n);
int a[n], i;
for(i=0; i<n; i++)
a[i] = rand()%n;
start = clock();
ShellSort(n, a);
stop = clock();
printf("希尔排序%d个数据花费时间为: %ldms\n", n, (stop-start)*1000/CLOCKS_PER_SEC);
for(i=0; i<n; i++)
a[i] = rand()%n;
start = clock();
HeapSort(n, a);
stop = clock();
printf("堆排序%d个数据花费时间为: %ldms\n", n, (stop-start)*1000/CLOCKS_PER_SEC);
for(i=0; i<n; i++)
a[i] = rand()%n;
start = clock();
MergeSort1(n, a);
stop = clock();
printf("递归式归并排序%d个数据花费时间为: %ldms\n", n, (stop-start)*1000/CLOCKS_PER_SEC);
for(i=0; i<n; i++)
a[i] = rand()%n;
start = clock();
MergeSort2(n, a);
stop = clock();
printf("非递归式归并排序%d个数据花费时间为: %ldms\n", n, (stop-start)*1000/CLOCKS_PER_SEC);
for(i=0; i<n; i++)
a[i] = rand()%n;
start = clock();
QuickSort(0, n-1, a);
stop = clock();
printf("快速排序%d个数据花费时间为: %ldms\n", n, (stop-start)*1000/CLOCKS_PER_SEC);
/* for(i=0; i<n; i++)
{
printf("%d ", a[i]);
}
*/
return 0;
}