数据结构课程设计-用栈实现表达式求值的方法详解
作者:
本篇文章是对在c语言中用栈实现表达式求值的方法进行了详细的分析介绍,需要的朋友参考下
1、需求分析
设计一个程序,演示用算符优先法对算术表达式求值的过程。利用算符优先关系,实现对算术四则混合运算表达式的求值。
(1)输入的形式:表达式,例如2*(3+4)
包含的运算符只能有'+' 、'-' 、'*' 、'/' 、'('、 ')';
(2)输出的形式:运算结果,例如2*(3+4)=14;
(3)程序所能达到的功能:对表达式求值并输出
2、系统设计
1、栈的抽象数据类型定义:
ADT Stack{
数据对象:D={ai|ai∈ElemSet,i=1,2,…,n,n≥0}
数据关系:R1={<ai-1,ai>|ai-1,ai∈D,i=2,…,n}
约定an端为栈顶,ai端为栈底
基本操作:
Push(&S,e)
初始条件:栈S已存在
操作结果:插入元素e为新的栈顶元素
Pop(&S,&e)
初始条件:栈S已存在且非空
操作结果:删除S的栈顶元素,并用e返回其值
}ADT Stack
3、各个模块的主要功能:
*Push(SC *s,char c):把字符压栈
*Push(SF *s,float f):把数值压栈
*Pop(SC *s):把字符退栈
*Pop(SF *s):把数值退栈
Operate(a,theta,b):根据theta对a和b进行'+' 、'-' 、'*' 、'/' 、'^'操作
In(Test,*TestOp):若Test为运算符则返回true,否则返回false
ReturnOpOrd(op,*TestOp):若Test为运算符,则返回此运算符在数组中的下标
precede(Aop,Bop):根据运算符优先级表返回Aop与Bop之间的优先级
EvaluateExpression(*MyExpression):用算符优先法对算术表达式求值
完整的程序代码如下:
#include"stdio.h"
#include"stdlib.h"
#include"string.h"
#include"math.h"
#define true 1
#define false 0
#define OPSETSIZE 8
typedef int Status;
unsigned char Prior[8][8] =
{ // 运算符优先级表
// '+' '-' '*' '/' '(' ')' '#' '^'
/*'+'*/'>','>','<','<','<','>','>','<',
/*'-'*/'>','>','<','<','<','>','>','<',
/*'*'*/'>','>','>','>','<','>','>','<',
/*'/'*/'>','>','>','>','<','>','>','<',
/*'('*/'<','<','<','<','<','=',' ','<',
/*')'*/'>','>','>','>',' ','>','>','>',
/*'#'*/'<','<','<','<','<',' ','=','<',
/*'^'*/'>','>','>','>','<','>','>','>'
};
typedef struct StackChar
{
char c;
struct StackChar *next;
}SC; //StackChar类型的结点SC
typedef struct StackFloat
{
float f;
struct StackFloat *next;
}SF; //StackFloat类型的结点SF
SC *Push(SC *s,char c) //SC类型的指针Push,返回p
{
SC *p=(SC*)malloc(sizeof(SC));
p->c=c;
p->next=s;
return p;
}
SF *Push(SF *s,float f) //SF类型的指针Push,返回p
{
SF *p=(SF*)malloc(sizeof(SF));
p->f=f;
p->next=s;
return p;
}
SC *Pop(SC *s) //SC类型的指针Pop
{
SC *q=s;
s=s->next;
free(q);
return s;
}
SF *Pop(SF *s) //SF类型的指针Pop
{
SF *q=s;
s=s->next;
free(q);
return s;
}
float Operate(float a,unsigned char theta, float b) //计算函数Operate
{
switch(theta)
{
case '+': return a+b;
case '-': return a-b;
case '*': return a*b;
case '/': return a/b;
case '^': return pow(a,b);
default : return 0;
}
}
char OPSET[OPSETSIZE]={'+','-','*','/','(',')','#','^'};
Status In(char Test,char *TestOp)
{
int Find=false;
for (int i=0; i< OPSETSIZE; i++)
{
if(Test == TestOp[i])
Find= true;
}
return Find;
}
Status ReturnOpOrd(char op,char *TestOp)
{
for(int i=0; i< OPSETSIZE; i++)
{
if (op == TestOp[i])
return i;
}
}
char precede(char Aop, char Bop)
{
return Prior[ReturnOpOrd(Aop,OPSET)][ReturnOpOrd(Bop,OPSET)];
}
float EvaluateExpression(char* MyExpression)
{
// 算术表达式求值的算符优先算法
// 设OPTR和OPND分别为运算符栈和运算数栈,OP为运算符集合
SC *OPTR=NULL; // 运算符栈,字符元素
SF *OPND=NULL; // 运算数栈,实数元素
char TempData[20];
float Data,a,b;
char theta,*c,Dr[]={'#','\0'};
OPTR=Push(OPTR,'#');
c=strcat(MyExpression,Dr);
strcpy(TempData,"\0");//字符串拷贝函数
while (*c!= '#' || OPTR->c!='#')
{
if (!In(*c, OPSET))
{
Dr[0]=*c;
strcat(TempData,Dr); //字符串连接函数
c++;
if (In(*c, OPSET))
{
Data=atof(TempData); //字符串转换函数(double)
OPND=Push(OPND, Data);
strcpy(TempData,"\0");
}
}
else // 不是运算符则进栈
{
switch (precede(OPTR->c, *c))
{
case '<': // 栈顶元素优先级低
OPTR=Push(OPTR, *c);
c++;
break;
case '=': // 脱括号并接收下一字符
OPTR=Pop(OPTR);
c++;
break;
case '>': // 退栈并将运算结果入栈
theta=OPTR->c;OPTR=Pop(OPTR);
b=OPND->f;OPND=Pop(OPND);
a=OPND->f;OPND=Pop(OPND);
OPND=Push(OPND, Operate(a, theta, b));
break;
} //switch
}
} //while
return OPND->f;
} //EvaluateExpression
int main(void)
{
char s[128];
puts("请输入表达式:");
gets(s);
puts("该表达式的值为:");
printf("%s\b=%g\n",s,EvaluateExpression(s));
system("pause");
return 0;
}
测试结果如下:
设计一个程序,演示用算符优先法对算术表达式求值的过程。利用算符优先关系,实现对算术四则混合运算表达式的求值。
(1)输入的形式:表达式,例如2*(3+4)
包含的运算符只能有'+' 、'-' 、'*' 、'/' 、'('、 ')';
(2)输出的形式:运算结果,例如2*(3+4)=14;
(3)程序所能达到的功能:对表达式求值并输出
2、系统设计
1、栈的抽象数据类型定义:
ADT Stack{
数据对象:D={ai|ai∈ElemSet,i=1,2,…,n,n≥0}
数据关系:R1={<ai-1,ai>|ai-1,ai∈D,i=2,…,n}
约定an端为栈顶,ai端为栈底
基本操作:
Push(&S,e)
初始条件:栈S已存在
操作结果:插入元素e为新的栈顶元素
Pop(&S,&e)
初始条件:栈S已存在且非空
操作结果:删除S的栈顶元素,并用e返回其值
}ADT Stack
3、各个模块的主要功能:
*Push(SC *s,char c):把字符压栈
*Push(SF *s,float f):把数值压栈
*Pop(SC *s):把字符退栈
*Pop(SF *s):把数值退栈
Operate(a,theta,b):根据theta对a和b进行'+' 、'-' 、'*' 、'/' 、'^'操作
In(Test,*TestOp):若Test为运算符则返回true,否则返回false
ReturnOpOrd(op,*TestOp):若Test为运算符,则返回此运算符在数组中的下标
precede(Aop,Bop):根据运算符优先级表返回Aop与Bop之间的优先级
EvaluateExpression(*MyExpression):用算符优先法对算术表达式求值
完整的程序代码如下:
复制代码 代码如下:
#include"stdio.h"
#include"stdlib.h"
#include"string.h"
#include"math.h"
#define true 1
#define false 0
#define OPSETSIZE 8
typedef int Status;
unsigned char Prior[8][8] =
{ // 运算符优先级表
// '+' '-' '*' '/' '(' ')' '#' '^'
/*'+'*/'>','>','<','<','<','>','>','<',
/*'-'*/'>','>','<','<','<','>','>','<',
/*'*'*/'>','>','>','>','<','>','>','<',
/*'/'*/'>','>','>','>','<','>','>','<',
/*'('*/'<','<','<','<','<','=',' ','<',
/*')'*/'>','>','>','>',' ','>','>','>',
/*'#'*/'<','<','<','<','<',' ','=','<',
/*'^'*/'>','>','>','>','<','>','>','>'
};
typedef struct StackChar
{
char c;
struct StackChar *next;
}SC; //StackChar类型的结点SC
typedef struct StackFloat
{
float f;
struct StackFloat *next;
}SF; //StackFloat类型的结点SF
SC *Push(SC *s,char c) //SC类型的指针Push,返回p
{
SC *p=(SC*)malloc(sizeof(SC));
p->c=c;
p->next=s;
return p;
}
SF *Push(SF *s,float f) //SF类型的指针Push,返回p
{
SF *p=(SF*)malloc(sizeof(SF));
p->f=f;
p->next=s;
return p;
}
SC *Pop(SC *s) //SC类型的指针Pop
{
SC *q=s;
s=s->next;
free(q);
return s;
}
SF *Pop(SF *s) //SF类型的指针Pop
{
SF *q=s;
s=s->next;
free(q);
return s;
}
float Operate(float a,unsigned char theta, float b) //计算函数Operate
{
switch(theta)
{
case '+': return a+b;
case '-': return a-b;
case '*': return a*b;
case '/': return a/b;
case '^': return pow(a,b);
default : return 0;
}
}
char OPSET[OPSETSIZE]={'+','-','*','/','(',')','#','^'};
Status In(char Test,char *TestOp)
{
int Find=false;
for (int i=0; i< OPSETSIZE; i++)
{
if(Test == TestOp[i])
Find= true;
}
return Find;
}
Status ReturnOpOrd(char op,char *TestOp)
{
for(int i=0; i< OPSETSIZE; i++)
{
if (op == TestOp[i])
return i;
}
}
char precede(char Aop, char Bop)
{
return Prior[ReturnOpOrd(Aop,OPSET)][ReturnOpOrd(Bop,OPSET)];
}
float EvaluateExpression(char* MyExpression)
{
// 算术表达式求值的算符优先算法
// 设OPTR和OPND分别为运算符栈和运算数栈,OP为运算符集合
SC *OPTR=NULL; // 运算符栈,字符元素
SF *OPND=NULL; // 运算数栈,实数元素
char TempData[20];
float Data,a,b;
char theta,*c,Dr[]={'#','\0'};
OPTR=Push(OPTR,'#');
c=strcat(MyExpression,Dr);
strcpy(TempData,"\0");//字符串拷贝函数
while (*c!= '#' || OPTR->c!='#')
{
if (!In(*c, OPSET))
{
Dr[0]=*c;
strcat(TempData,Dr); //字符串连接函数
c++;
if (In(*c, OPSET))
{
Data=atof(TempData); //字符串转换函数(double)
OPND=Push(OPND, Data);
strcpy(TempData,"\0");
}
}
else // 不是运算符则进栈
{
switch (precede(OPTR->c, *c))
{
case '<': // 栈顶元素优先级低
OPTR=Push(OPTR, *c);
c++;
break;
case '=': // 脱括号并接收下一字符
OPTR=Pop(OPTR);
c++;
break;
case '>': // 退栈并将运算结果入栈
theta=OPTR->c;OPTR=Pop(OPTR);
b=OPND->f;OPND=Pop(OPND);
a=OPND->f;OPND=Pop(OPND);
OPND=Push(OPND, Operate(a, theta, b));
break;
} //switch
}
} //while
return OPND->f;
} //EvaluateExpression
int main(void)
{
char s[128];
puts("请输入表达式:");
gets(s);
puts("该表达式的值为:");
printf("%s\b=%g\n",s,EvaluateExpression(s));
system("pause");
return 0;
}
测试结果如下: