python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python读取绘制nc数据

python读取并绘制nc数据的保姆级教程

作者:钢筋火龙果

其实目前很多数据以nc格式存储,这篇文章主要给大家介绍了关于python读取并绘制nc数据的保姆级教程,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

 读取nc数据相关信息

#导入库
import netCDF4
from netCDF4 import Dataset
 
#读取数据文件
nc_file=Dataset("/media/hsy/HSYWS/001DATA/VPD_DATA/vapor_pressure_deficit_1979.nc")
 
#输出数据文件的两种方式
#nc_file
print(nc_file)

输出结果展示:

<class 'netCDF4._netCDF4.Dataset'> root group (NETCDF4 data model, file format HDF5): Conventions: CF-1.4

created_by: R, packages ncdf4 and raster (version 3.3-13)

date: 2021-10-08 13:21:50

dimensions(sizes): Longitude(1440), Latitude(721), Time(365)

variables(dimensions): int32 crs(), float64 Longitude(Longitude), float64 Latitude(Latitude), int32 Time(Time), float32 VPD(Time, Latitude, Longitude)

groups:

#所有变量读取
print(nc_file.variables.keys())
 
#输出结果:dict_keys(['crs', 'Longitude', 'Latitude', 'Time', 'VPD'])
 
#单个变量读取
nc_file['Longitude']
#print(nc_file.variables['Longitude'])
 
"""<class 'netCDF4._netCDF4.Variable'>
float64 Longitude(Longitude)
    units: degrees_east
    long_name: Longitude
unlimited dimensions: 
current shape = (1440,)
filling on, default _FillValue of 9.969209968386869e+36 used"""
 
print(nc_file.variables['crs'])

结果输出解读:

<class 'netCDF4._netCDF4.Variable'> #文件数据类型

int32 crs()

        proj4: +proj=longlat +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 +no_defs #proj4坐标系参数,详情请见:Quick start — PROJ 9.1.0 documentation

unlimited dimensions:

current shape = () filling on, default _FillValue of -2147483647 used

#单个变量的所有属性名称
print(nc_file.variables['VPD'].ncattrs())
#['_FillValue', 'long_name', 'grid_mapping', 'proj4', 'min', 'max']
print(nc_file.variables['VPD'].proj4)#proj4坐标系
print(nc_file.variables['VPD'].grid_mapping)#给定坐标变量与真实经纬度坐标之间的映射关系:crs
print(nc_file.variables['VPD']._FillValue)#填充值或空值
#读取变量的维度
print(nc_file['VPD'].shape)
#(365, 721, 1440) (#time, latitude, longitude) 格点分辨率为:天*0.25*0.25度。
#读取变量值
VPD=nc_file.variables['VPD'][:]
print(VPD)#读取结果含有全部数值。
#print(nc_file['VPD'])#输出结果不完整

绘图

1、利用matplotlib绘图

import matplotlib.pyplot as plt
plt.contourf(long, lat, VPD[10, :, :] )
plt.colorbar(label="VPD", orientation="horizontal")
plt.show()

 2、利用basemap绘图

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
lon0 = long.mean()
lat0 = lat.mean()
# 设置投影方式:cyl为圆柱投影、还可设置merc为mercator投影 llcrnrlat为起始lat;urcrnrlat为终止lat
# m = Basemap(projection='merc', llcrnrlat=lat[0], urcrnrlat=lat[-1], \
#              llcrnrlon=lon[0], urcrnrlon=lon[-1], ax=ax1)
# 参数 "resolution" 用于控制地图面积边缘的精细程度,有'l'和'h'两种取值
m = Basemap(lat_0=lat0, lon_0=lon0,projection='cyl',resolution='l')
# 绘制等经纬度线 纬度每隔20度画一条线,且标注经纬度
m.drawparallels(np.arange(-90., 91., 20.), labels=[1, 0, 0, 0], fontsize=10)
m.drawmeridians(np.arange(-180., 181., 40.), labels=[0, 0, 0, 1], fontsize=10)
m.drawcoastlines()# 绘制海岸线
lon, lat = np.meshgrid(long, lat)
xi, yi = m(lon, lat)
# cmap是图形颜色,还可选‘jet'、‘spring'、‘winter'、'summer'、'autumn'
cs = m.contourf(xi, yi, VPD[10],  cmap='summer')
# pad指位置,
cbar = m.colorbar(cs, location='bottom', pad="10%",format='%.1f')
font1 = {'family': 'DejaVu Sans', 'weight': 'normal', 'size': 16}
plt.title('VPD', font1)
plt.show()

3、利用cartopy绘图

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
proj = ccrs.PlateCarree()
fig = plt.figure(figsize=(15, 7))  
fig, ax = plt.subplots(1, 1, subplot_kw={'projection': proj})  
# 或者 ax = fig.add_subplot(111,proj=proj)
lon1 = nc_file.variables['Longitude'][:]
lat1 = nc_file.variables['Latitude'][:]
print(lon1.shape, lat1.shape)
ax.contourf(lon, lat, VPD[100])
ax.coastlines(resolution = '10m')
#添加格网
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
# 设置 gridlines 和 ticklabels 
gl = ax.gridlines(draw_labels = True, linewidth = 1.5)
gl.xlabels_top = False 
gl.xlines = True
gl.xformatter = LONGITUDE_FORMATTER
gl.ylabels_right = False 
gl.ylines = True
gl.yformatter = LATITUDE_FORMATTER
plt.show()

总结

到此这篇关于python读取并绘制nc数据的保姆级教程的文章就介绍到这了,更多相关python读取绘制nc数据内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文